Multivariate prediction intervals for bagged models

Folie, Brendan and Hutchinson, Maxwell (2023) Multivariate prediction intervals for bagged models. Machine Learning: Science and Technology, 4 (1). 015022. ISSN 2632-2153

[thumbnail of Folie_2023_Mach._Learn.__Sci._Technol._4_015022.pdf] Text
Folie_2023_Mach._Learn.__Sci._Technol._4_015022.pdf - Published Version

Download (2MB)

Abstract

Accurate uncertainty estimates can significantly improve the performance of iterative design of experiments, as in sequential and reinforcement learning. For many such problems in engineering and the physical sciences, the design task depends on multiple correlated model outputs as objectives and/or constraints. To better solve these problems, we propose a recalibrated bootstrap method to generate multivariate prediction intervals for bagged models such as random forest and show that it is well-calibrated. We apply the recalibrated bootstrap to a simulated sequential learning problem with multiple objectives and show that it leads to a marked decrease in the number of iterations required to find a satisfactory candidate. This indicates that the recalibrated bootstrap could be a valuable tool for practitioners using machine learning to optimize systems with multiple competing targets.

Item Type: Article
Subjects: Pacific Library > Multidisciplinary
Depositing User: Unnamed user with email support@pacificlibrary.org
Date Deposited: 13 Jul 2023 04:05
Last Modified: 07 Jun 2024 11:09
URI: http://editor.classicopenlibrary.com/id/eprint/1711

Actions (login required)

View Item
View Item