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Abstract
Accurate uncertainty estimates can significantly improve the performance of iterative design of
experiments, as in sequential and reinforcement learning. For many such problems in engineering
and the physical sciences, the design task depends on multiple correlated model outputs as
objectives and/or constraints. To better solve these problems, we propose a recalibrated bootstrap
method to generate multivariate prediction intervals for bagged models such as random forest and
show that it is well-calibrated. We apply the recalibrated bootstrap to a simulated sequential
learning problem with multiple objectives and show that it leads to a marked decrease in the
number of iterations required to find a satisfactory candidate. This indicates that the recalibrated
bootstrap could be a valuable tool for practitioners using machine learning to optimize systems
with multiple competing targets.

1. Introduction

One drawback of many regression algorithms is that they do not naturally admit an uncertainty estimate. It
is often important to know not just what a model predicts but how confident it is in that prediction. For
situations in which a machine learning model is making a single decision, especially one of great import to
humans, such as who gets a mortgage or who is granted parole (Kuchibhotla and Berk 2023), an
overly-confident model can be disastrous. Accurate uncertainty estimates are also crucial when applying
machine learning to the physical sciences. For example, a practitioner may be using a model to identify a
material that achieves outstanding performance in some application (Meredig et al 2018). Many models are
unable to predict values substantially outside the range of the training data, so a direct prediction of such
performance is unlikely. But with a well-calibrated uncertainty estimate we may be able to identify candidates
that have a reasonable probability of achieving high performance. For this reason uncertainty estimates are
an integral part of machine learning based approaches to experimental design, such as Bayesian
Optimization, active and reinforcement learning, and sequential learning (SL) (Ling et al 2017). We are
especially concerned with multi-objective SL, where the optimization goal is to find a candidate x⃗ that meets
or exceeds several ambitious design targets y⃗(⃗x)⩾ b⃗ for an expensive-to-evaluate function y⃗. SL has been
used to identify novel organic LED materials (Antono et al 2020, Abroshan et al 2021), battery materials
(Dave et al 2020, Verduzco et al 2021), charging protocols (Attia et al 2020), colloidal nanoparticles (Fong
et al 2021) and perovskite photovoltaics (Liu et al 2022). More broadly, machine learning-guided
experimental design has been used in an astounding variety of fields, including structural engineering
(Mathern et al 2021, Zhang et al 2021), public health (Chandak et al 2020, Awal et al 2021), and
transportation (Liu et al 2021, Fakhrmoosavi et al 2022).

Many real-world problems involve multiple objectives that are strongly related to each other. For
example, a scientist may seek to create a new thermoelectric material that efficiently converts waste heat into
electricity. This requires high electrical conductivity and low thermal conductivity, but increasing one tends
to increase the other. Or a rover may seek to plan a trajectory through space that maximizes the information
it collects over the trajectory while minimizing the length of the trajectory (Wang et al 2018). In order to
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reliably identify promising candidates, a model should be able to produce multivariate prediction intervals
that quantify output correlations.

Here we propose amulti-output recalibrated bootstrapmethod to generate multivariate prediction
intervals for bagged models by rescaling the bootstrap standard deviation based on the out-of-bag (OOB)
errors. This method is fast, easy to implement, and works even with small numbers of bags and training
rows. We study the accuracy of the recalibrated bootstrap on a variety of synthetic and real-world test
problems, showing that it is well-calibrated in both the single- and multi-output cases. Finally we test the
recalibrated bootstrap on a multi-output SL scenario, in which the algorithm attempts to identify a candidate
that will simultaneously satisfy several competing objectives. We find a marked decrease in the number of
iterations required, which has significant implications for real-world SL.

2. Related work

Several early and influential studies of uncertainty in random forests focused on generating a confidence
interval for the predicted value. Wager et al (2014) studied two generalizations of the jackknife, the
infinitesimal jackknife (IJ) and the jackknife after bootstrap (JaB), and introduced a bias-correction term
that decreases the number of bags needed for the calculation to converge. Around the same time Mentch and
Hooker (2016) proposed a modification to the sub-sampling procedure that allows for the generation of
confidence intervals. These procedures estimate model variability: by how much is the prediction likely to
vary if the model were retrained on a new set of training data drawn from the underlying distribution? This
is not the same as a prediction interval, which is an attempt to bound the true value. To drive this distinction
home, figure 7 in appendix D.1 plots the jackknife standard deviation and model error for two
one-dimensional test functions and shows that the jackknife can greatly underestimate the true prediction
error. Despite this mismatch many works have used the jackknife methods of Wager et al (2014) as if they
were a prediction interval (Ling et al 2017, Ruesch et al 2020, Wahab et al 2020, Carrella 2021, Lepioufle et al
2021, Roman et al 2021), sometimes leading to sub-optimal results. For example, when using the IJ to
estimate uncertainty as part of a sequential learning study, Rohr et al (2020) take note of the ‘...general
overconfidence of [jackknife-based] methods.’

So how does one generate a prediction interval? Quantile regression forests (QRF) (Meinshausen 2006)
were an early attempt. A separate model is trained for each desired quantile. QRFs are highly versatile but
require large amounts of data to train and can be noisy (Zhang et al 2020). The last few years have seen
renewed interest in the subject. Lei et al (2018) developed a general ‘split conformal’ method for producing
regression prediction intervals. Conformal methods are flexible in that they make no assumptions about the
model. They generate prediction intervals by examining the residuals on new test points. The split conformal
method reserves some training data for this purpose, hence it is data-inefficient. Dewolf et al (2023) conduct
a review of methods to generate prediction intervals on regression problems and find that different methods
are better at different problems, but all methods can achieve high accuracy if a conformal method is used to
recalibrate the prediction intervals.

Zhang et al (2020) specialized the conformal approach to random forest and made it more efficient by
considering the OOB residuals. The OOB predictions are those made by base learners that were not exposed
to a given training point, and hence they provide a reasonable proxy for how the model will perform on new
data points. Zhang et al (2020) prove that their OOB prediction interval has an asymptotically correct
coverage rate given certain assumptions. Kim et al (2020), Barber et al (2021)expand on this idea,
constructing the prediction intervals using both the OOB residuals and predictions. This allows them to
prove bounds on the coverage that are valid even without large amounts of training data. But one drawback
of these approaches is that the interval is not conditioned on the input, meaning it does not generalize well
when the noise is heteroskedastic or the training and test data are not drawn from the same underlying
distribution. The lack of conditioning is particularly problematic when designing an experiment (e.g. SL),
where the prediction interval should be smaller near previously sampled regions of the domain and larger in
unexplored ones.

A conditional prediction interval is proposed by Lu and Hardin (2021), who weight the OOB residuals
based on how similar each training point is to the test point. Similarity is determined by the tree structure—a
test point is similar to training points with which it shares the leaf node. In this way, the prediction interval is
sensitive to the local OOB error. Another conditional prediction interval is suggested by Palmer et al (2022),
who estimate the local uncertainty by calculating the standard deviation over the base learner predictions.
This value is shifted and rescaled by constant factors that are estimated based on the residuals computed by
cross-validation.

As far as we can tell, the question of multivariate prediction intervals for bagged learners is entirely
unexplored in the literature. Looking at other types of models, one can generate multi-output uncertainty
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estimates with Gaussian process regression (GPR). By modeling the joint distribution as a multivariate
normal, GPR can in principle estimate the covariance between any two (input point, output variable) pairs.
But in practice, choosing a kernel and evaluating these covariances can be complicated. A common
technique, linear model of coregionalization, yields a correlation coefficient for each output pair that is not
conditioned on the input. Conditional correlation can be introduced, but requires that the practitioner be
opinionated as to the underlying structure of the data (Marcotte 2012). One can also use a deep neural
network to predict both the mean and the covariance matrix (Russell and Reale 2022), but due to the large
amount of data required, deep learning is not always feasible for scientific research problems.

Our contribution is to establish a method that produces conditional multivariate prediction intervals for
bagged models. For multivariate problems that are best represented using a bagged model, practitioners no
longer need to choose between model accuracy and access to correlated uncertainty estimates.

3. Recalibrated bootstrap prediction intervals

Consider N training examples Zi = (⃗xi, y⃗i), where x⃗ is an input vector and y⃗ is an output vector. The inputs
can be of any type but the outputs are real-valued. Assume that the training data are drawn according to
some ground-truth function f(⃗x) with sampling noise parameterized by a distribution ϵ(⃗x) that could be
heteroskedastic and non-uniform. That is, y⃗i = f(⃗x)+ ϵ(⃗x).

We draw B bootstrap samples of the training data, each of which is generated by sampling N times with
replacement. The resulting sample is used to train a base learner that makes predictions t⃗b(⃗x). The model

prediction is the mean of the base learners:
ˆ⃗
θ(⃗x) = 1

B

∑B
b=1 t⃗b(⃗x). We use a carat to denote a quantity that is

estimated over the bootstrap samples.
We propose a prediction interval that is given by a normal distribution centered on

ˆ⃗
θ(⃗x). Though the true

interval is not necessarily normal, this approximation is worth considering because it facilitates the
generalization to multiple outputs. The only thing that needs to be computed is the covariance matrix of the
normal distribution. We take this to be the covariance matrix of the bootstrap predictions, but we rescale
each entry using recalibration factors that are computed using the OOB predictions. We use the notation
(−i) to determine a quantity computed over the OOB trees for training point i.

We first consider a single response y and show how to generate a standard deviation that corresponds to a
normal prediction interval. We choose a confidence level parameter p ∈ (0,1) and calculate the equivalent
number of standard deviations of a normal distribution: η(p) = Φ−1( 1+p

2 ) where Φ is the CDF of a unit
normal distribution. Given p, Algorithm 1 describes how to calculate the recalibration factor α and apply it
to new predictions.

Like Palmer et al (2022), this method computes factors to recalibrate the bootstrap standard deviation.
But there are two key differences. First, using the OOB residuals instead of cross-validation makes the
method more data-efficient. Second, as we will show in the subsequent analysis, using the p-percentile
instead of the maximum likelihood estimate (MLE) makes the method more robust to outliers as long as the
chosen value of p is not too extreme.

The generalization to a multivariate prediction interval is straight-forward. For each pair of outputs we
calculate a recalibrated covariance using the individual recalibration factors. Let αj and αk be the

recalibration factors for outputs j and k. For a given output j let tbj(⃗x) be the prediction of tree b, θ̂j(⃗x) be the
mean prediction, and σ̂j(⃗x), written explicitly in equation (1), be the recalibrated standard deviation that
forms the univariate prediction interval

σ̂j(⃗x) = αj

√√√√ 1

B− 1

B∑
b=1

(tbj(⃗x)− θ̂j(⃗x))2. (1)

The covariance estimate is then given by equation (2)

σ̂2
jk =

1

B− 1

B∑
b=1

(
αj(tbj(⃗x)− θ̂j(⃗x))

)(
αk(tbk(⃗x)− θ̂k(⃗x))

)

=

∑
b

(
tbj(⃗x)− θ̂j(⃗x)

)(
tbk(⃗x)− θ̂k(⃗x)

)
√√√√(∑

b

(tbj(⃗x)− θ̂j(⃗x))
2

)(∑
b

(tbk(⃗x)− θ̂k(⃗x))
2

) σ̂j(⃗x)σ̂k(⃗x)

≡ ρ̂jk(⃗x)σ̂j(⃗x)σ̂k(⃗x).

(2)
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Algorithm 1: Recalibrated bootstrap prediction interval in one dimension.

Stage : Determine recalibration factor α;
Given : N training points (⃗xi,yi);
Given : B bootstrap samples and base learners tb(⃗x);
Given : A confidence level parameter, p ∈ (0,1);
for all training points x⃗i do

Calculate the OOB mean, θ̂(−i)(⃗x);
Calculate the OOB standard deviation, ŝ(−i)(⃗x);

Calculate the OOB standard residual, |̃roob|=
|θ̂(−i)(⃗x)− yi|

ŝ(−i)
;

end
Let r̃p be the p-percentile value of the |̃roob|;
Set α equal to r̃p/η(p), where η(p) is the equivalent number of standard deviations of a normal distribution;
Stage : estimate prediction interval for a new input;
Given : new input x⃗;
Calculate ŝ(⃗x), the standard deviation over the predictions t(⃗x);
The prediction interval is defined by a normal distribution with mean θ̂(⃗x) and standard deviation α ∗ ŝ(⃗x)

The bootstrap correlation coefficient ρ̂jk(⃗x) is shown to be the ordinary Pearson correlation coefficient

calculated over the tree-wise predictions. If the resulting covariance matrix is Σ̂(⃗x) then the prediction

interval region is defined by a normal distributionN (
ˆ⃗
θ(⃗x), Σ̂(⃗x)). We refer to this distribution as the

prediction distribution.
This is a pleasing result—by forcing the prediction distribution to be normal and by using the tree-wise

standard deviation as a proxy for uncertainty, we have arrived at a multivariate distribution that is nearly free
to generate and evaluate, since it makes use of the existing bootstrap predictions, and capable of fully
describing a multivariate prediction interval without large amounts of training data. Other methods to
compute a prediction interval, such as Zhang et al (2020) or Lu and Hardin (2021), are parameter-free but
do not have a clear multivariate generalization, and any such generalization would likely require the amount
of data to grow exponentially with the number of outputs.

The efficacy of this procedure will be established in subsequent section by showing that the prediction
distribution is well calibrated and that it leads to more efficient SL. But it is also worth briefly considering the
theoretical justification for Algorithm 1, which presupposes that the standard OOB residuals are drawn from
the same distribution as the test set residuals and also that the bootstrap variance is proportional to the
squared residual. We show in appendices B.1 and B.2 that these are reasonable propositions, given that the
training and test sets are drawn independently from identical distributions. In real-world data sets, including
those used in this work, the training and test sets are often drawn from non-identical distributions. But as we
will see, the recalibrated bootstrap still performs well.

If the standard residuals are normally distributed, then the choice of p has no effect on the rescaling
factor. In practice we expect some non-normality. How strongly does the distribution deviate from normality
and how does that affect the resulting prediction intervals? We investigate these questions numerically, by
training a large number of random forest models on different training data draws and examining the
distribution of standard OOB residuals. Results are shown in figure 1(a) for the Friedman–Grosse function
(see appendix A.3). Considering both the PDF and the CDF we see that the values are evenly distributed and
close to normal, but have slightly fatter tails. The inability to capture these tails is one drawback of restricting
the prediction interval to be a normal distribution. The results on other test problems are similar (see
appendix D.3), though real-world data sets tend to produce a more skewed distribution. Even in those cases
the normality assumption is a useful first-order approximation, as we will see in section 5.

In figure 1(b) we plot the recalibration factor vs. p. Consistent with the distribution having fat tails, we
see the recalibration factor increase around p= 0.9 because a broader distribution is needed to capture the
larger residuals. We also consider the recalibration factor that maximizes the total log likelihood of the OOB
residuals, similar to what is proposed in Palmer et al (2022), and plot it as a dashed line. Maximizing the log
likelihood proposes a larger recalibration factor because it is sensitive to the penalty imposed by
underestimating the large residuals.

For simplicity we set p= 0.683 for most of the remainder of this manuscript, corresponding to one
standard deviation. A larger value of p would produce prediction intervals that are slightly wider. Exactly
how this impacts SL depends on the acquisition function, and is a potential topic for further study. In
section D.5 we compare the results of simulated SL using both p= 0.683 and p= 0.95 (corresponding to two
standard deviations) and find that there is no statistical difference.
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Figure 1. The standard out-of-bag (OOB) residuals approximate a normal distribution, hence the recalibrated bootstrap is
expected to produce a well-calibrated prediction interval. This is seen by (a) comparing the PDF and CDF to that of an ideal
normal and (b) checking the uniformity of the recalibration factor as a function of confidence level. We also calculate the
recalibration factor generated using the MLE method and see that it is strongly influenced by outliers. Data were generated using
the Friedman–Grosse function with a noise level of 2.0. There are 128 training points, 64 bags, and 100 trials.

4. Numerical experiments: how well calibrated is the proposed prediction interval?

We perform numerical experiments to investigate the accuracy of the prediction intervals proposed by the
recalibrated bootstrap method. We consider modifications of two commonly-used synthetic problems,
Friedman–Silverman and Friedman–Grosse, with added Gaussian noise. We also consider two real-world
data sets, ‘thermoelectrics’ (Gaultois et al 2013) and ‘mechanical properties’ (Borg et al 2020), both of which
have uncharacterized noise that is expected to be heteroskedastic and non-normal. All of the data sets are
dense, although the methods described here are amenable to sparse data as well. Details of the data sets are in
appendix A.

For each test problem we generate training and test data sets, train a random forest model on the training
data, apply the model to the test data, and evaluate the performance of the proposed prediction intervals by
comparing them to the ‘observed’ values. For all models we calculate the recalibration factor using p= 0.683,
corresponding to η≈ 1.

All random forest models were trained with the package Lolo (Hutchinson 2016), which is available
under the Apache License 2.0. Unless otherwise stated, all forests contained 64 decision trees. All decision
trees were grown to full depth and all inputs were considered at each split. The split was chosen to maximize
the reduction in total variance summed over all outputs. All outputs were standardized before training to
have mean 0 and variance 1.

4.1. Metrics
We consider three metrics of prediction interval quality.
Standard error: the mean of the absolute residual divided by the predicted uncertainty, as given in

equation (3) (the sum is over the test data). This value should be around 1.0, and it should be stable as the
number of training data are varied. This metric is only used for univariate prediction intervals

Standard error =
1

M

∑
j

|θ̂(⃗xj)− yj|
σ̂(⃗xj)

. (3)

Standard confidence: how closely does the number of residuals within some magnitude match the
number of residuals that are expected to be within that magnitude? The magnitude of the residual is the

Mahalanobis distance, rM =
√⃗

rTΣ̂(⃗xj)−1⃗r, where r⃗=
ˆ⃗
θ(⃗xj)− y⃗j is the residual. The squared Mahalanobis

distance follows a χ2 distribution with d degrees of freedom, where d is the number of output dimensions.
For a given coverage level pc ∈ (0,1) we can therefore use the inverse CDF of χ2

d to calculate the associated
cutoff distance ηc, and count the number of observations for which rM < ηc. In one dimension this reduces
to equation (4)

Standard confidence =
1

M

∑
j

1

[
|θ̂(⃗xj)− yj|

σ̂(⃗xj)
⩽ Φ−1

(
1+ pc
2

)]
. (4)
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Figure 2. The recalibrated bootstrap produces a well-calibrated univariate prediction interval on synthetic data, as seen by
examining (a) standard confidence and (b) standard error. The empirical OOB residuals method (Zhang et al 2020) also performs
well on this problem. Data are generated using the Friedman–Grosse function with normally distributed noise of magnitude 2.0.
There are 128 test points and each random forest has 64 bags. 64 trials were run, each involving a different set of training and test
data. Error bars show one standard error.

If the standard confidence is greater than pc then the model is under-confident, and if it is less than pc
then the model is over-confident. In this work we use ‘standard confidence’ to refer to the case when
pc ≈ 0.683.

Median negative log probability density (MNLPD): Let p(⃗y;
ˆ⃗
θ(⃗x), Σ̂(⃗x)) be the probability density

function of the prediction distribution at point x⃗. The NLPD for test point (⃗xj, y⃗j) is given by equation (5).
Lower values are better. NLPD penalizes both over- and under-confident prediction intervals. Because NLPD
is prone to outliers (especially for the jackknife method), here we consider the median value over all test
points

NLPD(⃗xj) =− ln(p(⃗yj;
ˆ⃗
θ(⃗xj), Σ̂(⃗xj))). (5)

4.2. Univariate calibration
We show that the recalibrated bootstrap is well-calibrated by calculating the standard confidence and
standard error for data generated using the Friedman–Grosse function. We also calculate these metrics using
a non-parametric prediction interval calculated via the empirical OOB residuals, as proposed in Zhang et al
(2020). As shown in figure 2 both methods achieve standard confidence and standard error close to the
expected values. In figure 9 we consider several other test problems. Performance is generally good for both
methods, but the skewed real-world data poses more of a challenge. In particular, for the ZT data, the
‘empirical OOB residuals’ method is highly over-confident. The recalibrated bootstrap proves more robust.

The stability of the recalibrated bootstrap is further explored in the appendices. In appendix D.2 we
consider what happens when the test and training data are drawn from different distributions. The
recalibrated bootstrap is significantly more robust than the ‘empirical OOB residuals’ method. We also
consider the impact of the number of bags, and find it is largely irrelevant (figure 10). Finally we consider the
behavior of the recalibrated bootstrap in the high-noise limit, finding that it correctly identifies the noise as
the primary source of uncertainty (figure 11).

While an in-depth comparison of univariate prediction intervals is beyond the scope of this work, we
have shown that the recalibrated bootstrap is well-calibrated in a variety of situations, including those with
real-world data for which the error is not expected to be Gaussian. We have also shown that it compares
favorably to a distribution-free method of construction a prediction interval. In the subsequent sections we
show that it also produces well-calibrated multivariate prediction intervals and that this quality results in
significantly more efficient SL.

4.3. Multivariate calibration
To investigate the multivariate case we calculate σ̂j(⃗x) using the recalibrated bootstrap method and consider
four different methods of calculating ρ̂jk(⃗x).

(a) Trivial: ρ̂jk = 0, the probability of satisfying each objective is considered independently. In the absence
of existing methods to compute multivariate prediction intervals, this is the baseline approach.

(b) Training data: calculate the Pearson correlation coefficient over the training data and and use that value
for all predictions.
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Figure 3. The recalibrated bootstrap produces the best overall multivariate prediction intervals on a suite of test problems, as
judged by a low MNLPD (top row) and a standard confidence that is close to 0.68 (bottom row). Error bars show one standard
error. The four test problems are Friedman–Grosse with noise 2.0 (128 test points, 16 trials), Friedman–Silverman with noise 2.0
(128 test points, 16 trials), thermoelectrics (64 test points, 32 trials), and mechanical properties (48 test points, 32 trials). See
appendix A for details. In all instances the random forest models have 64 bags.

(c) Jackknife: calculate the jackknife variance, VJ, and the jackknife covariance, CovJ, and set
ρ̂jk = CovJ[ j,k]/

√
VJ[ j] ∗VJ[k]. See appendix C for more details.

(d) Bootstrap: calculate the Perason correlation coefficient over the tree-wise predictions as in equation (2).
This is the approach we are proposing here.

It might seem strange to consider the jackknife method, since it produces a quantity that is known to be
more confident than a prediction interval. But it is possible that this bias will cancel out between the variance
and covariance terms, leaving us with a decent estimate of correlation.

Figure 3 shows the MNLPD and Standard Confidence values for four test problems using each approach
to calculating ρjk. We see that the bootstrap method, which is highlighted with a star icon, generally has the
best MNLPD and a standard confidence that is good but slightly under-confident. The trivial method is
slightly over-confident by a similar amount. The thermoelectrics data set is an exception, for which the
bootstrap method is significantly under-confident. Yet as we will see in the next section, that does not
prevent the recalibrated bootstrap from achieving superior performance on simulated SL.

5. Application to multi-objective SL

A lower MNLPD value is all well and good, but what we really want to know is whether or not this prediction
distribution can help us make better decisions. We consider SL, a type of active learning, as a test problem
(Ling et al 2017). In SL, a user attempts to find an input point x⃗ that will lead to output y⃗ that simultaneously
satisfies their objectives. Given initial training data, we train a multi-output random forest model. The model
makes predictions at all unknown points, and an acquisition function is used to evaluate the suitability of
some test point. The highest-scoring test point is chosen for measurement. If it satisfies the objectives then
we are done. If not then it is added to the training set and the cycle repeats. This is similar in practice to
Bayesian Optimization (Shahriari et al 2016), but with a non-Bayesian model for the objectives and an
acquisition function defined only on the posterior distribution of the predictions and not on the posterior of
the objective model parameters.

Any multi-objective acquisition function may be used. Here we use the predicted probability of the
candidate lying in the satisfactory region. This probability is estimated by drawing 10 000 samples from the
prediction distribution. In other situations it might be preferable to use other acquisition functions, such as
the probability of being Pareto non-dominated (del Rosario et al 2020).

We simulate SL on two problems. First, we modify the Friedman–Grosse function to generate two
outputs that have a non-trivial relationship to each other. The outputs are positively correlated in one region
and negatively correlated in another region. See appendix A.3 for more details. The objectives are that each
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Figure 4. Using the recalibrated bootstrap decreases the number of iterations required to find a configuration that satisfies
multiple competing objectives. It is better than the jackknife method and much better than the trivial method, which ignores
correlations. The underlying data for the (a) synthetic and (b) thermoelectrics problem are plotted along with dashed lines to
indicate the satisfactory regions. Violin plots in (c) and (d) show the distribution of results over 64 trials, along with lines to
indicate the 5th percentile, median, and 95th percentile. The synthetic data problem starts with 16 training data and the
thermoelectrics problem starts with 32 training data.

Table 1. Distribution of rounds required to find a satisfactory candidate in simulated sequential learning. Mean values are reported
along with one standard error. Results are calculated over 64 independent trials.

Method Mean 5th percentile Median 95th percentile

7em synthetic data
(2 objectives)

Trivial 36.0± 2.6 2 43 61
Training data 41.8± 3.1 2 51 72
Jackknife 11.2± 1.5 1 7 37.7
Bootstrap 7.5± 1.0 1 4.5 22.7
Random 36 3 33 87

7em thermoelectrics
data (4 objectives)

Trivial 330± 25 15 309 630
Training data 230± 19 19 200.5 532.5
Jackknife 240± 21 35 203 568
Bootstrap 170± 20 8 125 497
Random 328 33 328 623

output should exceed 22, a value chosen to make the problem challenging. As seen in figure 5 of
appendix A.3, only two points satisfy both objectives.

Second, we consider the thermoelectrics data set and devise a problem for which there is one solution: ZT
> 1.25, Seebeck coefficient> 175 µVK−1, power factor> 5× 10−3WmK−2, and thermal conductivity
> 1.5WmK−1. The data are plotted in figure 6 of appendix A.5.

Figure 4 shows the results of 64 trials of simulated SL. Each trial involved a different set of initial training
data points. The distribution of rounds to find a satisfactory candidate is shown as a violin plot. The 5th
percentile, median, and 95th percentile values are indicated with horizontal lines. These values, along with
the mean and standard error, are shown in table 1. Table 1 also includes the values that would be expected
if test points were drawn randomly. The bootstrap consistently requires the fewest iterations to find a
satisfactory candidate. Compared to the trivial method, the median trial requires 90% fewer iterations for the
synthetic problem and 60% fewer iterations for the thermoelectrics problem. Perhaps more importantly, the
trivial method suffers from a long tail of disastrous trials in which the performance is worse than that of
random guessing. The recalibrated bootstrap largely avoids this pathology.

6. Conclusions

We propose a ‘multi-output recalibrated bootstrap’ method to generate multivariate prediction intervals for
random forest or any other bagged ensemble model. The covariance matrix of the bootstrap predictions
defines a multivariate normal distribution, but the values are rescaled using the OOB residuals. We show that
this prediction interval is well-calibrated by testing it against several data sets.

8
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Our focus is not, however, the prediction interval itself, but its applicability to multi-output SL. We
simulate SL on both synthetic and real data and show that using the recalibrated bootstrap significantly
decreases the number of iterations required to find a high-performing candidate by between 2× and 8×
compared to common alternatives. Although this study is limited in that it only considers a few data sets, we
feel that the dramatic improvement seen on real-world, noisy, imbalanced data is promising enough to merit
its use and further study.

Developing the next-generation materials crucial to renewable energy generation and storage is an ideal
problem for multi-objective SL: there are typically multiple ambitious goals that compete against each other,
existing data sets are modest in size, each experiment can be enormously expensive, and there is a positive
social impact. But SL is a value-agnostic algorithm for optimizing any complex system using machine
learning, and it can just as easily be used to increase the lethality of explosives or the potency of a nicotine
cartridge. Our contribution increases the efficacy of SL, and hence its societal impact depends on the
problems it is applied to.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://
github.com/CitrineInformatics/multivariate-prediction-intervals.

Appendix A. Compendium of test problems

The sections below describe how to generate ground-truth data for each test problem. For synthetic
problems additional noise may be added in the form of ϵ ∗N (0,1), where ϵ is the noise level.

A.1. Tophat
The tophat method used in figure 7(a) is defined in equation (6)

y=


1.0, if |x|< 0.33

0.5, if 0.33⩽ |x|< 0.67

0, otherwise.

(6)

A.2. Cubic
The cubic method used in figure 7(b) is simply y= x3.

A.3. Friedman–Grosse
The Friedman–Grosse function (Friedman et al 1983), in equation (7) is defined on the unit hypercube in at
least five dimensions. In this paper we use eight dimensions, but dimensions 6–8 do not contribute to the
output

y0 = 10sin(πx0x1)+ 20(x2 − 0.5)2 + 10x3 + 5x4. (7)

A.3.1. Additional outputs for calibration studies
For the purposes of investigating the prediction distribution’s calibration (figure 3) we generate two
additional outputs, both of which are correlated with Y0. The first additional output, Y1, has some fixed
linear correlation, ρ, with Y0. The second additional output, Y2, varies between being positively and
negatively correlated with Y0.

We now describe the procedure to generate a new variable, Y1, that has some fixed linear correlation with
the existing output variable, Y0. Assume that we have first drawn N points x⃗i with associated output values
y0i. To created a new variable with known correlation we want to mix together those y0i with an uncorrelated
signal, Z

′
. We create an uncorrelated signal by drawing N values from a unit normal distribution, zi,

performing linear least squares regression Z=mY, and computing an orthogonal signal Z ′ = Z−mY. Let
σZ ′ be the standard deviation of the residuals and let σY0 be the standard deviation of the Y0 values. For a
desired correlation coefficient ρ, the first additional output is Y1 = ρσZ ′Y0 +

√
1− ρ2σY0Z ′.

Because Y0 and Z
′
are orthogonal, Cov(Y1,Y0) = ρσZ ′Cov(Y0,Y0) = ρσZ ′σ2

Y0 . Also, Var(Y1) =
ρ2σ2

Z ′σ2
Y0 +(1− ρ2)σ2

Y0σ
2
Z ′ = σ2

Y0σ
2
Z ′ . The correlation coefficient between Y0 and Y1 is therefore exactly

equal to ρ. In this work we set ρ= 0.9 unless otherwise specified.
The second additional output is defined with a quadratic equation. Let µy0 be the mean of the values y0i.

We then define y2i = (y0i −µy0)
2 + f ∗N (0,1), where f is some adjustable parameter. In this work we set

f = 0.5 unless otherwise specified, which leads to a strong (but non-uniform) correlation.
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Figure 5. Synthetic data set generated using the Friedman–Grosse function for simulated sequential learning. In one region (‘A
phase’) there is a strong positive correlation between the outputs, while in the other region (‘B phase’) there is a strong negative
correlation between the outputs. The dashed lines correspond to the two objectives used in the simulated sequential learning
study.

A.3.2. Additional output for SL
For the purposes of synthetic SL we generate the second output differently, because the intent is to create a
problem in which the correlation coefficient varies depending on the region of input space. We first generate
128 inputs by sampling uniformly from the hypercube and calculate the first output y using equation (7). We
then create another input, ‘phase,’ and randomly assign each point to either ‘A’ or ‘B’. For the points in phase
A, the second output is generated using the linear procedure in the previous subsection, using ρ= 0.98. For
the points in phase B, the second output is equal to

√
302 − y2 (30 is the largest possible value of the

Friedman–Grosse function).
This data set is plotted in figure 5 along with dashed lines at 22 for both the first and second output,

corresponding to the objectives used in the SL simulation. We see that only two points satisfy both objectives.

A.4. Friedman–Silverman
The Friedman–Silverman function (Friedman and Silverman 1989), in equation (8) is defined on the unit
hypercube in at least five dimensions. In this paper we use 12 dimensions, but dimensions 6–12 do not
contribute to the output

y0 = 0.1e4x0 +
4

1+ e−20(x1−0.5)
+ 3x2 + 2x3 + x4. (8)

For the purposes of investigating the prediction distribution’s calibration (figure 3), two additional
outputs are generated in the same way as for the Friedman–Grosse function.

A.5. Thermoelectrics
The data come from Gaultois et al (2013). There are 688 thermoelectric materials, each with a chemical
formula, crystallinity (either poly-crystalline or single crystal), and temperature at which the measurements
were taken. The chemical formulae were featurized using the Matminer package (Ward et al 2018) to
calculate the Magpie features (Ward et al 2016). Along with temperature and crystallinity, these are the
inputs to the ML models. There are five measured output properties: ZT, Seebeck coefficient, thermal
conductivity, power factor, and log resistivity. One projection of this data set is plotted in figure 6.

A.6. Mechanical properties
The data come from Borg et al (2020). There are 630 multi-principal element alloys, some measured under a
variety of conditions. The data set contains several inputs and several outputs, many of which are sparse. To
yield a dense training table we only consider the following inputs: processing method (cast, wrought, anneal,
powder, and other), crystal structure (bcc, fcc, and other), test type (compression or tension), and chemical
formula. The chemical formulae are featurized as with the thermoelectrics data. We only consider two output
properties: Young’s modulus and elongation.

We only keep rows that have values for all inputs and outputs. We only keep rows that were measured at
room temperature (between 20◦C and 25◦C). If there are multiple rows with identical inputs, we average
their output properties. This yields 287 rows.

10
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Figure 6. A projection of the thermoelectrics data set, meant to visualize the difficulty of the simulated SL problem. Dashed lines
indicate the objectives for ZT (1.25) and power factor (0.005 WmK−2). Points are colored red or orange according to whether or
not the seebeck coefficient exceeds the objective of 175 µVK−1. The marker is a star or a circle depending on whether or not the
thermal conductivity, kappa, exceeds the objective of 1.5 WmK−1.

Appendix B. Analysis of the recalibrated bootstrap

A decision tree partitions the domain into rectangular subspaces, each corresponding to a terminal node of
the tree. The prediction in this subspace is the average of the values of the training data that appear in that
node. This training data→ subspace correspondence is a complicated function of the training data, the
splitting function, and random variables (such as which input dimensions are being considered), but we can
write the tree’s predictions as a weighted sum of the training data. The RF prediction is therefore given by
equation (9), where {Zn} ∈ Z is represents the training data draw of size n and ϕ ∈ Φ represents a random
variables that controls the splitting. The weights wbi(⃗x) are non-zero only when x⃗i is ‘close’ to x⃗, and the
weights sum to 1 for each tree and value of x⃗

θ̂(⃗x) =
1

B

B∑
b=1

N∑
i=1

wbi(⃗x;{Zn},ϕ)yi. (9)

The OOB prediction for x⃗i is similar, but the sum is taken only over the trees for which x⃗i is not present in
the bootstrap sample. This is, on average, B/e trees

θ̂(−i)(⃗xi) =
1

B/e

∑
b:zi /∈Zb

∑
j

wbj(⃗xi;{Zn},ϕ)yi. (10)

B.1. Asymptotic equivalence of standard residual distributions
We wish to show that the distribution of true standard residuals is equivalent to the distribution of OOB
standard residuals: 〈

θ̂(−i)(⃗xi)− yi
ŝ(−i)(⃗xi)

〉
{Zn},ϕ,zj

?
=

〈
θ̂(⃗x)− ( f(⃗x)+ ϵN (0,1)

ŝ(⃗x)

〉
{Zn},ϕ,x,y

. (11)

The expectation is taken over all training data draws {Zn} and parameters ϕ, and on the LHS over all
training data (⃗xj,yj) ∈ {Zn\zi} while on the RHS it is over all x⃗ in the domain and all associated observations
drawn from y= f(⃗s)+ ϵN (0,1).

Consider what a fixed point x⃗ contributes to each side of this equation. Because the labels yi are generated
according to f(⃗x)+ ϵN (0,1), and drawing the noise at x⃗ is independent of ŝ(⃗x), we can replace both yi and
f(⃗x)+ ϵN (0,1) in expectation with f(⃗x). On the LHS we therefore have the mean standard residual at x⃗ for an
RF model trained with N − 1 iid training points and B/e trees. On the right we have the mean standard
residual at x⃗ for an RF model trained with N iid training points and B trees. For large values of B and N, these
are equivalent.

11
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B.2. Bootstrap variance is sensitive to the true error
The total expected squared error due to a model can be represented as the sum of the bias squared, the model
variance, and the noise variance. We wish to show that the bootstrap variance (and hence the recalibrated
bootstrap standard deviation) is sensitive to each of these terms.

B.2.1. Noise variance
The bootstrap variance is written in equation (12)

⟨̂s2(⃗x)⟩=

〈
1

B− 1

∑
b

(tb(⃗x)− θ̂(⃗x))2
〉

{Zn},ϕ

=
B

B− 1
⟨tb(⃗x)2⟩{Zn},ϕ,b −

B

B− 1
⟨θ̂(⃗x)2⟩{Zn},ϕ. (12)

The simplification is possible because θ̂ is the mean of tb. First, we consider the expectation of tb(⃗x)2:

⟨tb(⃗x)2⟩{Zn},ϕ,b =

〈(∑
i

wbi(⃗x;{Zn},ϕ)( f(⃗xi)+ ϵN (0,1))

)2〉
{Zn},ϕ,b

. (13)

The weights wbi(⃗x)mostly depend on which training data are ‘close’ to x⃗ in input space. There is some
dependence on the exact values of yi, but we can consider the weights wbi to be roughly independent of the
noise drawn from ϵN (0,1). In that case the expectation simplifies to equation (14), where L is the typical
number of unique training observations on a leaf node

⟨tb(⃗x)2⟩ ≈

〈(∑
i

wbi(⃗x;{Zn},ϕ)f(⃗xi)

)2〉
{Zn},ϕ,b

+
ϵ2

L
. (14)

Similarly, ⟨θ̂(⃗x)2⟩{Zn},ϕ also has a term that goes as ϵ2. But since there is an additional average over the
bootstrap samples and each bootstrap sample masks off some training data, there will be a larger number of
independent noise draws being averaged together and hence the effective value of L is larger. Therefore,
⟨̂s(⃗x)2⟩ has a term that is proportional to the noise variance ϵ2. This term is smaller if there are more training
examples on each leaf node, but that makes sense since we would expect a model that averages over more
training data to be less sensitive to the noise.

In appendix D we show that, as the noise becomes the dominant term, the recalibrated bootstrap
correctly identifies each observation as being an independent random variable with uncertainty equal to the
noise.

B.2.2. Model variance
Having considered the noise, we set ϵ= 0 for the remainder of this appendix. We next consider the variance
due to the finite training data set size and the parameters of the model, ⟨θ̂(⃗x)2⟩{Zn},ϕ −⟨θ̂(⃗x)⟩2{Zn},ϕ. Assume

for now that there is no bias, so ⟨θ̂(⃗x)⟩= f(⃗x), and without loss of generality assume f(⃗x) = 0. Our task is to
show that ⟨̂s(⃗x)2⟩ ∝ ⟨θ̂(⃗x)2⟩{Zn},ϕ, which by equation (12) is equivalent to showing that ⟨tb(⃗x)2⟩{Zn},ϕ,b ∝
⟨θ̂(⃗x)2⟩{Zn},ϕ.

But this is clearly true because θ̂(⃗x) is the mean of tb(⃗x). Consider some fixed {Zn} and ϕ. The tb(⃗x) are
the predictions made by all trees trained on bootstrap replicates of {Zn}. The θ̂(⃗x) are the averages of all sets
of B draws from the distribution of tb(⃗x). By the law of large numbers, the variance of the latter is equal to the
variance of the former times 1/B. Hence, ⟨̂s(⃗x)2⟩ is sensitive to model variance.

B.2.3. Bias squared
Assume for simplicity that the training data are independent and identically distributed, that f(⃗x) is
continuous, and that the random forest is full-depth. In this case the model is asymptotically consistent and
free of bias except for at the boundaries. As a way of illustrating how the bootstrap variance can pick up bias,
we consider the boundary of a one-dimensional test problem. A more rigorous investigation would need to
consider multivariate and non-identically distributed data, which is the case for the real-world data sets used
here.

Let the domain be [0,1] and let the function f (x) have slopem at x= 0. Because the trees are grown to full
depth the predicted value at x= 0 will be equal to the value of the training point with the smallest value of x.

12
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Because the training data are drawn uniformly this is equal in expectation to 1/(N+ 1). Assuming the linear
approximation of f (x) is valid over the length-scale of 1/(N+ 1), the predicted value will therefore be equal
in expectation tom/(N+ 1).

However, roughly 1/e trees will be missing this data point. Most of these trees will make a prediction that
is equal to the value of the training point with the second-smallest value of x, which in expectation is at
2/(N+ 1) and has a value of 2m/(N+ 1). There are other terms as well, but they are all proportional to
m/(N+ 1). Hence the bias goes asm/(N+ 1) and the bias squared goes asm2/(N+ 1)2.

Now consider the bootstrap variance, which is the mean of (tb(0)− θ̂(0))2. As discussed above, tb(0) is
always proportional tom/(N+ 1). Hence θ̂(0)∝m/(N+ 1). Though the sum is complex, every term has a
factor ofm/(N+ 1) that can be factored out, and so the bootstrap variance goes asm2/(N+ 1)2, just like the
bias squared does.

B.2.4. Conclusion
These arguments are not precise, and in fact we do not expect the bootstrap variance to perfectly capture the
true residual. We merely show that it has the capability to pick up on the bias, the variance, and the noise. Its
efficacy and ability to balance these three terms is shown through the numerical experiments in this
manuscript.

Appendix C. Details of Jackknife variance and covariance (including the bias-correction
term)

Wager et al (2014) introduces bias-corrected versions of two methods to estimate a confidence interval: the IJ
and the JaB. Here we generalize those derivations from variance to covariance. Wager et al (2014) found that
the IJ and JaB had opposite lowest-order biases, and hence suggested averaging them. In this manuscript,
whenever ‘jackknife methods’ are invoked, it is the average of the IJ and the JaB (co)variance. The square root
of this term is referred to as the ‘jackknife standard deviation.’

Although the derivations below consider covariance between two outputs predicted by one ensemble
model at one input point, they also apply to the covariance between predictions made at two distinct input
points or to predictions made by two distinct ensemble models. Indeed, Ghosal (2021) derive an analogue of
equation (15) but their focus is on the covariance between the predictions made by two models, in order to
test if the models are equivalent.

C.1. IJ covariance
We show that the bias-corrected IJ covariance between outputs j and k at point x⃗ is given by equation (15),
where Ybi is the number of times training datum i appears in bag b

CovIJ[ j,k](⃗x)≈
N∑
i=1

(
B∑

b=1

(Ybi − 1)(tbj(⃗x)− θ̂j(⃗x))

B

)(
B∑

b=1

(Ybi − 1)(tbk(⃗x)− θ̂k(⃗x))

B

)

− N− 1

B

B∑
b=1

(tbj(⃗x)− θ̂j(⃗x))(tbk(⃗x)− θ̂k(⃗x)). (15)

C.1.1. Main term
We follow the arguments in Efron (2014), which themselves are similar to those in Efron (1982), but we
generalize to covariance. Consider two estimators, θ̂j and θ̂k, that evaluate some functions θj and θk for a
given distribution of training data. For our purposes, θj and θk correspond to two outputs that the model
predicts. The predictions depend on the bootstrap samples, which are generated by drawing N samples from
N training data according to some probability vector, p⃗ of length N. For an ordinary bootstrap, p⃗= p⃗0, a
uniform vector for which each entry is equal to 1/N. Equivalently, this can be thought of as an isotropic
rescaled multinomial distribution,M.

We are therefore interested in the covariance between θj( p⃗) and θj( p⃗) over the multinomial distribution.
Both θj and θk are effectively functions of p⃗, and we linearize them around p⃗0 as θj( p⃗) = θj( p⃗0)

+ ( p⃗− p⃗0) · U⃗, where U⃗ is the influence function. Similarly, let V⃗ be the influence function of θj( p⃗)|⃗p0 .
Because

∑
iUi =

∑
iVi = 0, the covariance reduces as shown below
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CovM[θ( p⃗),ϕ( p⃗)] = EM[(θ( p⃗)− θ̄( p⃗))(ϕ( p⃗)− ϕ̄( p⃗))]

= EM[( p⃗− p⃗0) · U⃗( p⃗− p⃗0) · V⃗)]

= EM[( p⃗ · U⃗)( p⃗ · V⃗)]

= EM

[
N∑
i=1

p2iUiVi +
N∑
i=1

∑
l̸=i

piplUiVl

=
N∑
i=1

UiViEM[p2i ] +
N∑
i=1

∑
l̸=i

UiVlEM[pipl].

The expectation values of p2i and pipj are those ofM, for which the mean of each term is 1/N, the
variance of each term is 1/N2 − 1/N3, and the covariance between any pair of terms is−1/N3. This yields
the following

CovM[θj( p⃗),θk( p⃗)] =
1

N2

N∑
i=1

UiVi.

What are U i and V i? By taking the derivative, Efron (2014) derives them to be equal to NCov∗[Ybi, tb(⃗x)].
The asterisk indicates that the covariance is taken over the bootstrap samples. The IJ covariance estimate
between outputs j and k is therefore given by equation (16), which is a natural generalization of the IJ
variance

CovIJ[ j,k](⃗x) =
N∑
i=1

Cov∗[Ybi, tbj(⃗x)]Cov∗[Ybi, tbk(⃗x)]. (16)

When expanding this covariance explicitly we need to know the mean values of Ybi and tb, which are 1
and θ̂.

C.1.2. Bias correction term
Equation (16) is exact as B→∞, but in practice we only consider a subset of bags. Let AB

j = Cov∗[Ybi, tbj(⃗x)]
and A∞

j be the same for infinite B. One term of the IJ sum is, in expectation:

E∗[A
B
j A

B
k ] = E∗[A

B
j ]E∗[A

B
k ] +Cov∗[A

B
j ,A

B
k ]

= A∞
j A∞

k +Cov[AB
j ,A

B
k ].

The difference between the finite-B value and the ideal value is therefore given by−NCov∗[AB
j ,A

B
k ].

Writing this out in detail we get expression (17), where the expectation is now taken over the training data

−N

B
E
[
Cov∗[Ybi ∗ (tbj(⃗x))− θ̂j(⃗x),Ybi ∗ (tbk(⃗x)− θ̂j(⃗x))]

]
. (17)

As in Wager et al (2014) we treat Ybi and tb as independent, meaning we can pull out the Ybi terms into
their own variance term V∗[Ybi], which is equal to the variance of a multinomial distribution, or (N− 1)/N.
The remaining covariance between the trees tbj and tbk is written out explicitly, and we arrive at the following
bias-correction term

−N− 1

B

B∑
b=1

(tbj(⃗x)− θ̂j(⃗x))(tbk(⃗x)− θ̂k(⃗x)). (18)

Note that this differs slightly from the bias-correction in Wager et al (2014), because they mistakenly set
the variance of Ybi equal to 1 and hence have a factor of N instead of N − 1 (this occurs right before equation
11 in Wager et al (2014)).

Combining equations (16) and (18) we arrive at equation (15).
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C.2. JaB covariance
We show that the bias-corrected JaB covariance between outputs j and k at point x⃗ is given by equation (19)

CovJaB[ j,k](⃗x)≈
N− 1

N

N∑
i=1

(
θ̂j(−i)(⃗x)− θ̂j(⃗x)

)(
θ̂k(−i)(⃗x)− θ̂k(⃗x)

)
− (e− 1)

N− 1

B

B∑
b=1

(tbj(⃗x)− θ̂j(⃗x))(tbk(⃗x)− θ̂k(⃗x)).

(19)

C.2.1. Main term
The derivation of the JaB in Efron (1982) is identical to that of the IJ, but the influence function is different.
The generalization to covariance therefore works out the same way and we get equation (20)

CovJaB[ j,k](⃗x) =
N− 1

N

N∑
i=1

(
θ̂j(−i)(⃗x)− θ̂j(⃗x)

)(
θ̂k(−i)(⃗x)− θ̂k(⃗x)

)
. (20)

C.2.2. Bias correction term
The derivation of the JaB bias term is the same as it is for the IJ, above, but instead of AB

j the relevant term for

some training datum i is now ∆̂ij ≡ θ̂Bj − θ̂B(−i)j (the dependence on x⃗ is elided for simplicity) and there is also

an overall factor of (N− 1)/N. In order to evaluate Cov∗[∆̂ij,∆̂ij] we follow appendix A of Wager et al (2014)
but generalize from variance to covariance.

Using the law of total covariance, we can expand this term out as follows:

Cov∗[∆̂ij,∆̂ik] = E∗

[
Cov∗[∆̂ij|Bi,∆̂ik|Bi]

]
+Cov∗

[
E∗[∆̂ij|Bi],E∗[∆̂ik|Bi]

]
.

The ‘covariance of expectation’ term simplifies just as the analogous ‘variance of expectation’ term in
Wager et al (2014), to∆ij∆ikO(1/B), where the∆ terms without a hat indicate the average over all possible
bootstrap samples.

To evaluate the ‘expectation of covariance’ term we re-write ∆̂ as a sum over Bi bags that do not contain
point i and a subsequent sum over B−Bi bags that do contain point i. On average, Bi = B/e

∆̂ij =
1

Bi

Bi∑
b=1

tbj −
1

B

B∑
b=1

tbj =
B−Bi

BBi

Bi∑
b=1

tbj −
1

B

B∑
b=Bi+1

tbj.

The covariance between ∆̂ij and ∆̂ik then breaks out into the sum of many covariance terms, all of the
form Cov[tbj, tb ′k]. But because the bags are independent, all of these terms are 0 unless b= b ′. We therefore
have Bi instances of Cov[tbj|Bi = 0, tbk|Bi = 0] and B−Bi instances of Cov[tbj|Bi ̸= 0, tbk|Bi ̸= 0], which we

denote cov(0)i and cov(+)
i

Cov∗[∆̂ij|Bi,∆̂ik|Bi] =

(
B−Bi

BBi

)2

Bicov
(0)
i +

1

B2
(B−Bi)cov

(+)
i . (21)

Equation (21) is identical to the analogous equation in Wager et al (2014) except that we have the
covariance between tbj and tbk instead of the variance of tb. Calculating the expectation therefore proceeds
the same way and we wind up with, to lowest order, e−1

B Cov∗[tbj, tbk]. Including the factor of (N− 1)/N and
the sum over N, we wind up with expression (22)

−(e− 1)
N− 1

B

B∑
b=1

(tbj(⃗x)− θ̂j(⃗x))(tbk(⃗x)− θ̂k(⃗x)). (22)

Note that this is again slightly different fromWager et al (2014), who convert the factor of N − 1 into a
factor of N for unclear reasons.

Combining equations (20) and (22) we arrive at equation (19).
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Figure 7. Jackknife standard deviation and true model root mean squared error (RMSE) for two one dimensional test functions:
(a) tophat and (b) cubic. The ground truth and predicted value (with±1 standard deviation) are plotted on the left axis. The
jackknife standard deviation and the RMSE are both plotted on the right axis.

Table 2. Comparison of the ‘recalibrated bootstrap’ and ‘empirical OOB residuals’ Zhang et al (2020) prediction interval methods on a
problem for which the training and test sets are drawn from different distributions.

MNLPD Standard RMSE Standard confidence

Empirical OOB residuals 7.37± 0.06 2.12± 0.07 0.38± 0.02
Recalibrated bootstrap 7.39± 0.02 1.35± 0.07 0.61± 0.03

Appendix D. More numerical experiments

D.1. The Jackknife underestimates the true model error
We consider two one-dimensional test problems, a double tophat and a cubic on the domain [−1, 1] (see
appendix A for details). We draw 64 training data uniformly, train an RF model, and calculate its predictions
on 100 points evenly spaced throughout the domain. We also calculate the jackknife standard deviation (see
appendix C) and the squared error at these points. This is averaged over 250 trials. The results, in figure 7,
show that a jackknife-based prediction interval can be highly over-confident, in particular when the model is
biased.

D.2. Performance on imbalanced data
Table 2 shows univariate uncertainty metrics when the training and test sets are drawn from highly
imbalanced distributions. We use the Young’s modulus output of the mechanical properties data set. In these
data there are points that were measured under tension and points that were measured under compression.
The training set consists of 60 tension points and 4 compression points. The test set consists of 32
compression points. We calculate prediction interval metrics for both the recalibrated bootstrap method and
the method of Zhang et al (2020), which uses the OOB residuals to compute an unconditional prediction
interval. We refer to this method as ‘OOB constant’. 50 trials were run, each involving a different draw of
training/test data. Models were trained with 64 bags. Error bars are one standard error.

We see that the OOB constant method is highly over-confident—the true residual is on average more
than twice as large as the 1-σ error bar. The recalibrated bootstrap is also over-confident but significantly less
so. Interestingly the MNLPD values are equivalent, highlighting the fact that MNLPD must be considered as
one of several metrics. The recalibration method of Palmer et al (2022) essentially minimizes NLPD, and
hence may also have trouble with imbalanced data.

D.3. Recalibration factors
Figure 8 shows the distribution of standard residuals and recalibration factors (as in figure 1) for four more
test problems: Friedman–Grosse without noise, Friedman–Silverman, the elongation output of the
mechanical properties data set, and the ZT output of the thermoelectrics data set.

We see that the other synthetic problems are well calibrated but also have some high-residual outliers.
The real-world data sets are skewed and more sharply peaked.
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Figure 8. Investigation of the standard OOB residuals and recalibration factors for several test problems.

D.4. Prediction interval metrics
Figure 9 shows the univariate prediction interval metrics (as in figure 2 for four more test problems:
Friedman–Grosse without noise, Friedman–Silverman with noise of magnitude 2.0, the Young’s modulus
output of the mechanical properties data set, and the ZT output of the thermoelectrics data set.

Figure 10 shows MNLPD for the multivariate Friedman–Grosse test problem with 128 test and training
points, varying the number of bags. The number of bags is largely irrelevant. The fact that a small, constant
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Figure 9. Univariate prediction interval metrics for several test problems, computed using the recalibrated bootstrap method
proposed here and the ‘empirical OOB residuals’ method of Zhang et al (2020). Synthetic problem have 128 test points; real data
test problems have 64 test points. All results are averaged over 64 trials. Each trial involves a different set of training and test data.
Error bars are 1 standard error.

number of bags suffices to create a well-calibrated prediction interval is one of the benefits of the recalibrated
bootstrap method.

Figure 11 shows the effect of varying the noise level for the Friedman–Grosse test problem. For a single
output we consider the size of the mean 1-σ prediction interval generated by the recalibrated bootstrap,
divided by the noise level. Ideally this would approach 1 as the noise becomes dominant. Instead it

18



Mach. Learn.: Sci. Technol. 4 (2023) 015022 B Folie and M Hutchinson

Figure 10. Increasing the number of bags does not change the relative accuracy of the correlation estimation methods. This test is
on the Friedman–Grosse function with noise level 1.0, 128 training and test points, and 16 trials. Error bars are one standard error.

Figure 11. (a) Recalibrated bootstrap prediction interval and (b) MNLPD as the noise level varies for the Friedman–Grosse test
problem. There are 128 training points, 64 bags, and 100 trials. Error bars are one standard error.

approaches 1.1. The standard residual (not shown) approaches 0.9, so we see that while the recalibrated
bootstrap largely picks up on the noise it is not quantitatively exactly correct.

For the multi-output problem we see that the recalibrated bootstrap and trivial methods of estimating
correlation converge to the same result in the high-noise limit. Since the noise is generated independently,
the correlation coefficients of the prediction distribution should be uniformly 0 in this limit. The trivial
method is therefore correct, and the fact that the recalibrated bootstrap method converges to the same result
indicates that it is hitting upon this correct answer as well.

D.5. Impact of confidence level parameter on SL
Table 3 shows the impact of varying the confidence level parameter in the recalibrated bootstrap algorithm.
Changing the value of p can change the recalibration factor and lead to a slight uniform rescaling of the
prediction intervals. For the synthetic problem based on the Friedman–Grosse function (appendix A.3), we
know from figure 1(b) that setting p= 0.95 generally leads to a larger recalibration ratio and wider prediction
intervals. However this is not seen to impact the results of simulated SL.
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Table 3.Mean number of iterations required to find a satisfactory candidate in the synthetic sequential learning problem, comparing
two values of the confidence level parameter from algorithm 1. Uncertainty values are one standard error computed over 64
independent trials.

p= 0.683 (1-σ) p= 0.95 (2-σ)

Trivial 36.0± 2.6 35.1± 2.8
Training data 41.8± 3.1 41.7± 2.9
Jackknife 11.2± 1.5 11.9± 1.6
Bootstrap 7.5± 1.0 7.5± 1.0
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