Dynamic strain anomalies detection at Stromboli before 2019 vulcanian explosions using machine learning

Romano, Pierdomenico and Di Lieto, Bellina and Scarpetta, Silvia and Apicella, Ilenia and Linde, Alan T. and Scarpa, Roberto (2022) Dynamic strain anomalies detection at Stromboli before 2019 vulcanian explosions using machine learning. Frontiers in Earth Science, 10. ISSN 2296-6463

[thumbnail of feart-10-862086.pdf] Text
feart-10-862086.pdf - Published Version

Download (5MB)

Abstract

Identifying and characterizing the dynamics of explosive activity is impelling to build tools for hazard assessment at open-conduit volcanoes: machine learning techniques are now a feasible choice. During the summer of 2019, Stromboli experienced two paroxysmal eruptions that occurred in two different volcanic phases, which gave us the possibility to conceive and test an early-warning algorithm on a real use case: the paroxysm on July, 3 was clearly preceded by smaller and less perceptible changes in the volcano dynamics, while the second paroxysm, on August 28 concluded the eruptive phase. Among the changes observed in the weeks preceding the July paroxysm one of the most significant is represented by the shape variation of the ordinary minor explosions, filtered in the very long period (VLP 2–50 s) band, recorded by the Sacks-Evertson strainmeter installed near the village of Stromboli. Starting from these observations, the usage of two independent methods (an unsupervised machine learning strategy and a cross-correlation algorithm) to classify strain transients falling in the ultra long period (ULP 50–200 s) frequency band, allowed us to validate the robustness of the approach. This classification leads us to establish a link between VLP and ULP shape variation forms and volcanic activity, especially related to the unforeseen 3 July 2019 paroxysm. Previous warning times used to precede paroxysms at Stromboli are of a few minutes only. For paroxysmal events occurring outside any long-lasting eruption, the initial success of our approach, although applied only to the few available examples, could permit us to anticipate this time to several days by detecting medium-term strain anomalies: this could be crucial for risk mitigation by prohibiting access to the summit. Our innovative analysis of dynamic strain may be used to provide an early-warning system also on other open conduit active volcanoes.

Item Type: Article
Subjects: Pacific Library > Geological Science
Depositing User: Unnamed user with email support@pacificlibrary.org
Date Deposited: 10 Mar 2023 07:29
Last Modified: 24 Sep 2024 12:31
URI: http://editor.classicopenlibrary.com/id/eprint/921

Actions (login required)

View Item
View Item