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Abstract. The work is devoted to the study of the frequency features of the 
optical flow obtained from the video record of long-term video-
electroencephalographic (video-EEG) monitoring data of patients with 
epilepsy. It is necessary to obtain features to recognize epileptic seizures and 
differentiate them from non-epileptic events. We propose to analyze the 
periodograms of the smoothed optical flow computed from the fragments of 
the patient’s video recordings. We use Welch's method to obtain 
periodograms. The values of the power spectral density of the optical flow at 
the selected frequencies are used as features. Using the clustering algorithm, 
seven groups of events are identified in video recordings and combined into 
three generalized classes. We train SVM classifier and conduct recognition of 
events in a test sample of 103 video fragments in four patients. The experiment 
indicates the accuracy of event classification equal to 90.3%. © 2021 Journal 
of Biomedical Photonics & Engineering.  
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1 Introduction 

In clinical practice, video-electroencephalographic 
monitoring, a method of long-term synchronous 
recording of an electroencephalogram (EEG) and video 
image, has become widely used. Simultaneous video 
recording of the patient’s clinical state and the 
bioelectrical activity of the brain makes it possible to 
reliably diagnose epileptic seizures and differentiate 
them from non-epileptic events [1, 2]. For recording and 
visual analysis of video-EEG data, physicians use 
specialized software (for example, Galileo NT Line 
package), which has a set of functions for signal 
processing and analysis, as well as statistical data 
analysis. If diagnostically important fragments of the 
EEG are found, the physician needs to revise the area of 
interest in the video recording for visual assessment and 
differentiation of an epileptic and artifact event. Visual 
analysis of video data is extremely laborious [21]; 

therefore, it becomes necessary to develop methods for 
automatic registration of epileptic seizures from video 
sequences obtained during video-EEG monitoring. 

Some works on the analysis of video recordings for 
the detection and recognition of epileptic events are 
known. The work [3] presents methods for measuring the 
motion strength and motor activity of newborns using 
video recording. The quantitative characteristics 
obtained in the form of signals are used to differentiate 
myoclonic and clonic seizures and to distinguish seizures 
from the normal behavior of the newborn. The motion 
strength is defined as the area of the moving parts of the 
infant’s body. To outline such fragments, the wavelet 
transform of frames, median filtering, and segmentation 
operations using an adaptive version of the k-means 
algorithm are used. The change in time of the coordinates 
of characteristic points, selected automatically on the 
child’s limbs and tracked using the KLT (Kanade-Lucas-
Tomasi) algorithm, generates signals that characterize 
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motor activity. Modifications of methods for measuring 
motion strength and motor activity are presented in the 
works [4, 5]. 

In the works [6, 7], the authors solved the problem of 
real-time detection of clonic seizures in newborns by the 
sequence of images obtained from video cameras. The 
value of the filtered average optical flow calculated as the 
sum of the binarized pixel-by-pixel difference in 
luminance of adjacent frames of the video sequence is 
analyzed. In Ref. [6], a feature of a seizure is the 
periodicity of the optical flow, which is detected using a 
hybrid autocorrelation-YIN estimation technique. In 
Ref. [7], the Maximum Likelihood criterion is used to 
determine the periodicity of the optical flow. 

The paper [8] presents an algorithm for recognizing 
convulsive seizures in real-time from a sequence of 
frames recorded by a video camera. To analyze video 
images and detect events, the method described in 
Ref. [9] is used. The method consists in computing the 
components of the optical flow associated with group 
transformations of objects in frames (translation, 
rotation, dilatation, shear) and band-pass temporal 
filtering to identify an occurrence of clonic movements. 

In the works [10, 11], the authors analyze video 
sequences recorded by multiple cameras to detect 
nocturnal motor seizures and central apneas occurring in 
the aftermath of epileptic seizures. The characteristics of 
the sigmoid patterns of the time-frequency spectrum 
(modulation maximum amplitude and total spectral 
power modulation at the time of the event) in the range 
of 0.1–1 Hz of translation, dilatation, and shear rates are 
used as features of a diagnostic event. These velocities 
are calculated by the method described in Ref. [9] from 
the optical flow generated by the patient's movements. 

Previously, the authors of studies [12, 13] proposed 
to detect events in a video recording by the magnitude of 
the optical flow, which characterizes the degree of 
mobility of the frame area in which the patient is located. 
The algorithm was designed to detect both convulsive 
and non-convulsive seizures. The tests showed that the 
detected events quite accurately coincided with the 
events detected during the analysis of the EEG wavelet 
spectrograms. In Ref. [14], an algorithm for the 
synchronous analysis of the EEG signal and video 
recording for the detection and differentiation of 
diagnostic and artifact events was proposed. The 
algorithm combines a threshold detector of brain activity 
using the ridges of wavelet spectrograms [15] and a 
threshold detector of events in terms of optical 
flow [12, 13]. The results of the analysis of clinical data 
recorded on EBNeuro equipment and Galileo NT Line 
package software showed the fundamental possibility of 
reliable distinguishing artifact events from epileptic 
seizures [14]. However, for more reliable recognition of 
epileptic seizures, additional features are needed. 

The study of publications has shown that frequency 
analysis of signals obtained from an optical flow is 
widely used to extract features of epileptic seizures. This 
work aims to study the frequency features of the optical 
flow of video recording for the recognition of diagnostic 

and artifact events during the synchronous analysis of 
video-EEG data. Unlike the well-known works, the 
proposed technique is not restricted to a specific seizure 
type, and this study will consider a wider range of events 
recorded on video. We propose to analyze the 
periodograms of the smoothed optical flow, computed 
from the fragments of the video recording of the patients. 
Since this work does not consider the multidirectional 
components of the optical flow, the classical method of 
spectral analysis of signals will be used to obtain 
periodograms. As features, we will use the values of the 
power spectral density (PSD) at the selected frequencies. 

2 Materials and Methods 

As mentioned above, this work aims to obtain and study 
the features for recognizing epileptic seizures in the data 
of long-term video-EEG monitoring and their 
differentiation with non-epileptic events. In this study, 
we used video recordings from long-term video EEG 
monitoring data of seven adult patients with an active 
level of wakefulness. The recordings were obtained with 
an HD camera using the Galileo NT Line package. The 
camera is fixed to the ceiling of the hospital room. The 
duration of the recordings is from 5 to 24 h or more. Each 
video consists of files in AVI format containing a 
fragment of three minutes in length.  

We will recognize events based on the analysis of the 
patient’s movement recorded by a video camera. To 
measure the intensity of the patient’s movement, we use 
the value of the smoothed total optical flow calculated in 
the region of interest in each frame of the video sequence. 
The optical flow is computed by the Lucas-Kanade 
method. To smooth the activity measure, we use a 
discrete version of the Kalman-Bucy filtering algorithm.  

We form the feature descriptions of events recorded 
on video based on the frequency analysis of the smoothed 
measure of patient’s activity. To compute periodograms, 
we use Welch’s method with a Hamming window of 
three sizes. We propose to use the values of the power 
spectral density of a measure of the patient’s mobility at 
14 selected frequencies as the features of events. To 
analyze the obtained feature descriptions of events and 
study the possibility of using pattern recognition 
algorithms for detecting events, we use a clustering 
algorithm with automatic choosing the optimal number 
of clusters. We use the Support Vector Machine (SVM) 
classifier to recognize events in video recordings. The 
classifier was trained on 78 three-minute video fragments 
of three adult patients with an active level of 
wakefulness. For testing, we used 103 video fragments of 
the other four adult patients.  

In the following sections of the article, we describe in 
detail the application of the listed above methods and 
data in our research. 

2.1 A measure of patient’s activity 

Analysis of publications in the domain of detecting 
seizures from video sequences showed that the most 
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common approach is based on the analysis of optical 
flow. In works [13, 14] we proposed to detect diagnostic 
events using the measure, characterizing the degree of 
activity of the region of interest. The region of interest is 
the part of the frame where the patient is located. A 
measure of the activity of the region of interest is the total 
value of the optical flow calculated for each frame of the 
video sequence: 

!(#) = !
"#∑ ∑ '($%(), +, #) + (&%(), +, #) +#'!&()

"'!
$() -(#), (1) 

where !(#) is the value of activity measure calculated in 
the frame number #; % is the width and & is the height 
of the region of interest in pixels; '!((, *, #), '"((, *, #) 
are the optical flow values in axial directions + and , in 
the frame number # at a pixel with coordinates ((, *); 
-(#) is noise. The measure of activity ! characterizes the 
intensity of movement of objects (patients) in the region 
of interest in frames of a video recording. To compute 
'!((, *, #)  and '"((, *, #)  in Eq. (1), we applied the 
Lucas–Kanade algorithm [16]. Two examples of seizure 
and food intake events from video-EEG data of two 
patients and computed optical flow vector fields are 
shown in Fig. 1 (a) and (b). 

 

(a) 

 
(b) 

Fig. 1 Frames fixing seizure (a) and food intake (b) events 
from video-EEG data of two patients and computed 
optical flow vector fields (shown as arrows). The size of 
the shown region of interest is 800 by 570 pixels, and the 
size of the corresponding field of view is about 120 by 
90 cm. 

As far as the noise component is present in model (1), 
we use the smoothed value of the activity measure !.(#) 
to detect events. The smoothed !.(#) value is obtained 
using a discrete version of the Kalman-Bucy filtering 
algorithm [17]. We apply the Kalman-Bucy algorithm 
because it provides the optimal estimate in the sense of 
minimum error variance. The graphs of the values of 
measure of activity !(#)  and smoothed measure of 
activity !.(#) obtained from a real video recording are 
shown in Fig. 2. In this video from 126 to 180 sec, an 
epileptic seizure is captured. The decision to fix a 
diagnostic event is made according to the threshold rule. 
To increase the reliability of event detection, it is 
necessary to take into account not only the amplitude but 
also the frequency characteristics of the measure of 
activity. In the next subsection, we will present a 
technique for extracting the frequency features of the 
smoothed measure of patient’s activity !.(#). 

 
Fig. 2 Graphs of measure of activity !  and smoothed 
measure of patient’s activity !.  obtained from a video 
recording of an epileptic seizure. The measure of activity 
! (as well as the smoothed measure !.) characterizes the 
intensity of movement of patients in the region of interest 
in frames of a video recording. 

2.2 Extracting frequency features of events  

To construct periodograms, we use the Welch method 
with a Hamming window with 50% overlap [18]. The 
analyzed video data are presented in the form of three-
minute fragments of the patient’s video recording which 
fix various events and their combinations: seizures, sleep, 
movement, food intake. The frame (sample) rate is equal 
to 20 frames per second. The sequence of samples of the 
value of the smoothed activity measure 
!.(0), … , !.(#)… , !.(1 − 1)  with an interval of  
4 = 0.05 sec is divided into 8 segments of 9 samples in 
each with a shift of :, : ≤ 9 samples between adjacent 
segments. The estimate of the Welch’s periodogram in 
the frequency range − #

$% ≤ < ≤ #
$% is determined by the 

following expression: 

8=& =
#
'∑ 8?()()

(+)'-#
+./ (<), (2) 
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where 8?()()
(+) is the spectrum of the weighted segment @,  

8?()()
(+) = #

01% A+
(+)(<)A

$
, (3) 

where +(+)(<) is the discrete-time transformation of the 
segment @; B is the energy of the window C. 

Using formulas (2) and (3), we obtained 
periodograms of different frequency resolutions at three 
window sizes: 10, 200, and 600 samples. Fig. 3 shows the 
examples of periodograms computed at window size 
equal to 200 from video records of different events in one 
of the patients. We studied 78 fragments of video 
recordings of three patients that fixed the following 
events: epileptic seizure, intense movement in the frame, 
sleep, rest, smooth movement, food intake. Fig. 3 shows 
that different events take different values of the power 
spectral density at a particular frequency value. To study 
the structure of the data that contain the obtained spectral 
characteristics of the optical flow, we use the technique 
of cluster analysis. The application of the clustering 
algorithm to distinguish groups of events by levels of 
power spectral density of periodograms obtained from 
video recordings of different events is described in the 
next subsection. 

2.3 Partitioning frequency feature space 

To study the possibility of using classifiers for detecting 
events, we applied a clustering algorithm. The algorithm 
is based on the search for locally optimal data partitions 
with automatic selection of the optimal number of 
clusters [19]. For optimization, the criterion for the 
minimum of the sum of intraclass variances is used:  

!23 =D !45
6
4.# ,		

!45 =
#

|5!|
∑ E(F8 , F49 )$:"∈5! , 

(4) 

where F49  is the center of group G4, to which the object 
F8  is assigned; E(F8 , F49 )  is the distance from object 

F8 ∈ G4  to the center of group F49 ; !45  is the intraclass 
variance. Here, F8 ∈ I

< , F49 ∈ I< , where N is the 
dimension of the feature space. 

The optimal number of clusters J  in the range 
K − 1 ≤ J ≤ L + 1 is determined from the condition for 
the maximum of the functional 

N = =#
>#
, (5) 
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A-#

8.6
+
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where ∆8= !8@#
23 − !8

23. 

 

 
Fig. 3 Optical flow periodograms of recordings of 
various events for one of the patients computed at 
window size D = 200. 

 

Table 1 Relative distances between cluster centers. Distances between the closest cluster centers are shown in bold. 

Events No 1 2 3 4 5 6 7 

Eating 1 0 0.43 0.21 0.64 0.17 0.55 0.46 

Seizure 2  0 0.55 1.0 0.55 0.95 0.19 
Smooth movement 3   0 0.46 0.11 0.49 0.53 

Sleep+movement 4    0 0.49 0.42 0.96 

Rest after seizure 5     0 0.44 0.55 

Sleep 6      0 0.98 

Movement 7       0 
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In the study, we used a set of feature descriptions of 
78 fragments of video recordings of events taken from 
the data of 24-h video-EEG monitoring of three adult 
patients with an active level of wakefulness. The feature 
space is formed from the PSD values of the periodograms 
of the optical flow obtained with three window sizes (see 
Section 3). The PSD values were taken at 14 frequencies 
selected in the range from 0.5 to 8.8 Hz. Thus, the 
dimension of the composited feature vectors is equal to 
42. The optimal number of clusters was chosen in the 
range from 2 to 8. 

The clustering algorithm described by formulas 
(4) – (6) partitioned the data extracted from the 
periodograms into seven groups of events characterized 
by similar PSD values at the selected frequencies: 
(1) food intake and combination of food intake and 
movement (“Eating”); (2) epileptical seizures 
(“Seizure”); (3) smooth movement (“Smooth 
movement”); (4) sleep and smooth movement 
(“Sleep + movement”); (5) rest and smooth movement 
after seizure (“Rest after seizure”); (6) sleep (“Sleep”), 
and (7) intensive movement (“Movement”). 

Table 1 gives the relative distances between the 
centers of the obtained clusters. 

The results given in Table 1 show that the clusters of 
feature descriptions of several types of events are well-
separated in the feature space, and the centers of several 
clusters are located relatively close. For example, the 
centers of the clusters “Seizure” and “Sleep”, “Smooth 
movement” and “Movement” are significantly distant, 
while the centers of the clusters “Smooth movement” and 
“Rest after seizure”, “Eating” and “Rest after seizure”, as 
well as “Seizure” and “Movement” are located relatively 
close, since the nature of the patient’s movements in 
these groups of events may be similar. Therefore, we 
combined closely spaced clusters and formed the 
following three generalized classes. The first class, 
“Seizure/Movement”, includes epileptic seizures and 
episodes of intense movement in the region of interest 
(clusters of events “Seizure” and “Movement”). The 
second class, “Sleep”, includes the patient’s sleep and 
state of rest (clusters of events “Sleep” and 
“Sleep + movement”). The third class, “Smooth 
movement”, includes events associated with the 
movements of low intensity. This class combines 
episodes of eating, smooth posture changes, and working 

with a smartphone or laptop (“Eating”, “Smooth 
movement”, and “Rest after seizure” event clusters). 
Thus, the frequency features extracted from the video 
recordings of long-term monitoring of patients made it 
possible to distinguish three types of patterns that 
characterize generalized classes of events.  

In the next section, to confirm the possibility of 
detecting events using frequency features, we will train 
the SVM classifier and recognize events from the test set 
of fragments from long-term video recordings of patients 
with epilepsy. 

3 Results 

We used the SVM algorithm [20] to classify events. A set 
of 78 feature descriptions of video recordings of events, 
described in Section 4, was used to train the classifier. 
Events are grouped into three generalized classes. In the 
SVM algorithm, we used a potential function in the form 
of a dot product. The leave-one-out cross-validation 
procedure was used for training. The results of training 
and quality measure values are given in Table 2. 

Feature descriptions of 103 three-min fragments of 
video recordings of long-term monitoring in four patients 
formed the test sample. The analyzed video fragments 
captured events given in Table 1 and their combinations, 
including seven seizures and five events of food intake. 
It should be noted that one event could be recorded in 
several consecutive three-minute video fragments. 
Table 3 presents the results of testing and values of 
recognition quality measures. 

4 Discussion 

The relatively low percentage of correctly recognized 
events from the “Seizure/Movement” class can be 
explained in the following way. The camera recorded 
most of the epileptic seizures from the test sample on 
several consecutive 3-min videos. Some records contain 
only the initial or final seizure stages. The duration of 
these stages is significantly shorter than three minutes. 
The size of the window used in calculating the estimates 
of periodograms by formulas (2), (3) is much less than 
the number of frames in a three-minute video  

Table 2 Results of training SVM classifier. 

Classes 
Classified 
objects 

True False 
From  

class 1 
From  

class 2 
From  

class 3 
Seizure/Movement 21 19 2 19 0 2 
Sleep 31 29 2 0 29 2 
Smooth movement 25 20 5 3 2 20 
Reject 1   0 0 1 
Total 78 (100%) 68 (87.2%) 9 (11.2%) 22 31 25 
Precision 6   90.5% 93.5% 80% 
Recall 7   86.4% 93.5% 80% 
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Table 3 Results of recognition of a test sample. 

Classes 
Classified 

objects 
True False 

From 
class1 

From  
class 2 

From 
class 3 

Seizure/Movement 18 18 0 18 0 0 
Sleep 26 24 2 1 24 1 
Smooth movement 59 51 8 6 2 51 
Total 103 (100%) 93 (90.3%) 10 (9.7%) 25 26 52 
Precision    100% 92.3% 86.4% 
Recall    72% 92.3% 98% 
Specificity    100% 77% 84% 
Negative predictive value    92% 97% 98% 
F1-score    83.7% 92.3% 91.8% 

Table 4 Performance of various event detection algorithms [6–11].  

Algorithm/reference Task Precision 
Recall 

(sensitivity) 
Specificity 

Negative 
predictive value 

Kouamou Ntonfo 
et al. (2012) [6] 

Detection of neonatal clonic 
seizures 

27–64% 60–93% 67–86% 93–96% 

Cattani 
et al. (2017) [7] 

Apneas detection 
Clonic seizure detection 

 
90–100% 
76–92% 

78–83% 
88–96% 

 

Geertsema 
et al. (2018) [8] 

Recognition of convulsive 
seizures 

 57–100%   

Kalitzin 
et al. (2012) [9] 

Segmentation of 
clonic seizures 

 95%   

Geertsema 
et al. (2020) [10] Detection of central apneas  >90% >99%  

van Westrhenen 
et al. (2020) [11] 

Detection of nocturnal motor 
seizures in children 

 94%   

recording, and the spectra of weighted segments (3) can 
vary significantly. In this case, the frequency pattern of 
the three-minute fragment, characterized by the estimate 
(2), may be deformed and assigned to the non-proper 
class. It should be noted that in the considered test set of 
video recordings, all epileptic seizures captured in 
several consecutive three-minute fragments are detected 
correctly in at least one of the fragments. In general, the 
percentage of correctly classified events is equal to 
90.3% of the total.  

Table 4 shows the characteristics of event recognition 
obtained by analyzing video sequences of video-EEG 
monitoring data by different methods presented in the 
works that we considered in Section 1. From the data in 
Tables 3 and 4 and taking into account the above remarks, 
it follows that the results of event detection (precision, 
recall, and specificity) obtained in this work correspond 
to the performance of the algorithms proposed in  
Refs. [6–11]. 

It is possible to increase the accuracy of event 
classification by reducing the duration of the analyzed 
video fragments and augmenting the training sample of 
events. Differentiation of seizures and artifacts of 

chewing and movement will be carried out in the 
synchronous analysis of video and EEG recordings. 

5 Conclusions 

We studied the possibility of using the frequency 
characteristics of the video recordings for analyzing 
long-term video-electroencephalographic monitoring 
data. Periodograms of the smoothed optical flow, 
calculated from the fragments of video recordings, which 
captured various events, were computed. To obtain 
periodograms, we used Welch’s method with the 
Hamming window of three sizes. The values of the 
spectral power density of the optical flow at fourteen 
selected frequencies are used as features of events. We 
applied the clustering algorithm with automatic selection 
of the optimal number of clusters to obtain optimal data 
partition. The preliminary results of the frequency 
analysis of the optical flow, computed from the video-
EEG monitoring data of patients, were obtained. Seven 
groups of events were identified in the feature space 
using the clustering algorithm. These groups were 
combined into three generalized classes. To confirm the 
possibility of detecting events by frequency 
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characteristics of video recordings, we trained an SVM 
classifier and conducted recognition of events in a test 
sample of 103 video fragments in four patients. The 
percentage of correctly classified events is equal to 
90.3% of the total. Further research will be aimed at 
improving the accuracy of detecting events in video 
recordings of patients by frequency features and 
developing an algorithm for synchronous analysis of 
video-EEG monitoring data. 
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