Admissible Inversion on Γ_{1} Non-Deranged Permutations

M. S. Magami ${ }^{1 \text { * }}$ and M. Ibrahim ${ }^{1}$
${ }^{1}$ Department of Mathematics, Usmanu Danfodiyo University, Sokoto, Nigeria.

Authors' contributions

> This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/ARJOM/2021/v17i830322
Editor(s):
(1) Dr. Nikolaos D. Bagis, Aristotle University of Thessaloniki, Greece.

Reviewers:
(1) Amit Sehgal, Pt. NRS Govt. College, India. (2) Ali Fareed Jameel, Universiti Utara Malaysia, Malaysia. Complete Peer review History: https://www.sdiarticle4.com/review-history/74367

Received 17 July 2021
Original Research Article

Abstract

Some further theoretic properties of scheme called Γ_{1} non deranged permutations, the permutation which fixes the first element in the permutations were identified and studied in relation to admissible inversion in this paper. This was done first through some computation on this scheme using prime number $p \geq 5$, the admissible inversion descent aid $\left(\omega_{p-1}\right)$ is equi-distributed with descent number $\operatorname{des}\left(\omega_{p-1}\right)$ and also showed that the admissible inversion set $\operatorname{Ai}\left(\omega_{i}\right)$ and admissible inversion set $\operatorname{Ai}\left(\omega_{p-i}\right)$ are disjoint.

Keywords: Inversion numbers; admissible inversion; descent number and $\Gamma_{1}-$ non deranged permutations.

1 Introduction

An Inversion of $(i, j) \in \operatorname{Inv}(f)$ is admissible if either $f(j)<f(j+1)$ or $f(j)>f(k)$ for some $i<k<j$ which is denoted as $A i(f)$ and the number of admissible inversion f denoted by $a i(f)=|A i(f)|$.Permutation statistic has a long history and has grown at rapid pace in the last few decades

[^0]the subject originated in early 19^{h} century by the work of [1] until [2] extensive study which become an established discipline of Mathematics. In the last three decades much progress has been made in discovering and analyzing new statistics see for example $[3,4,5,6,7,8]$ studied the representation of Γ_{1}-non deranged permutation group $G_{P}{ }^{\Gamma_{1}}$ via group character and also established that the character of every $\omega_{i} \in G_{P}^{{ }^{\Gamma_{1}}}$ is equal to one if $\omega_{i}=e$ otherwise p . Also the non standard Young tableaux of Γ_{1}-non deranged permutation group $G_{P}^{\Gamma_{1}}$ has been studied by [9], they established that the Young tableaux of this permutation group is non standard. [10] studied pattern popularity in Γ_{1}-non deranged permutations they establish algebraically that pattern τ_{1} is the most popular and pattern τ_{3}, τ_{4} and τ_{5} are equipopular in $G_{P}{ }^{\Gamma_{1}}$ they further provided efficient algorithms and some results on popularity of patterns of length-3 in $G_{P}{ }^{\Gamma_{1}}$. [11] studied the Fuzzy ideal of function $f \Gamma_{1}$-non deranged permutation group $G_{P}{ }^{\Gamma_{1}}$ and established that it is one side fuzzy (only right fuzzy but not left) also the α-level cut of f coincides with $G_{P}{ }^{\Gamma_{1}}$ if $\alpha=\frac{1}{p}$. [12] studied ascent on Γ_{1}-non deranged permutation group $G_{P}{ }^{\Gamma_{1}}$ in which recursion formula for generating Ascent number, Ascent bottom and Ascent top was develop and also observe that $\operatorname{Asc}\left(\omega_{i}\right)$ union $\operatorname{Asc}\left(\omega_{p-1}\right)$ is equal to $\operatorname{Asc}\left(\omega_{1}\right)$. [13] provide very useful theoretical properties of Γ_{1}-non deranged permutation s in relation to excedance and shown that the excedance set of all ω_{i} in $G_{P}{ }^{\Gamma_{1}}$ such that $\omega_{i} \neq e$ is $\frac{1}{2}(p-1)$. [14] established that the intersection of descent set of all Γ_{1}-non derangement is empty, also observed that the descent number is strictly lessone [15] established that inversion number and major index are not equidistributed in Γ_{1}-non deranged permutations and also established that the difference between sum of the major index and sum of the inversion number is equal to sum of descent number in Γ_{1}-non deranged permutations. [16] studied standard representation of Γ_{1}-non deranged permutations and also identified relation to ascent block by partitioning the permutation set in which a recursion formula for generating maximum number of block and minimum number of block were develop and it is also observed $\operatorname{ar}\left(\omega_{i}\right)$ that is equidistributed with $\operatorname{asc}\left(\omega_{i}\right)$ for any arbitrary permutation group. [17] established that in Γ_{1}-non deranged permutations, the radius of a graph of any ω_{1} is zero, the graph of any $\omega_{i} \in G_{p}^{\Gamma_{1}}$ is null, and by restricting 1, the graph of ω_{p-1} is complete. [18] established that the Right embracing number of Γ_{1}-non deranged permutations of $\omega_{i} \operatorname{Re} s\left(\omega_{i}\right)$ is equidistributed with the Left embracing $\operatorname{Les}\left(\omega_{i}\right)$ and then $\operatorname{Re} s\left(\omega_{i}\right)$ is equidistributed with $\operatorname{Re} s\left(\omega_{p-i}\right)$ and also observed that the height of weighted motzkin path of ω_{i} is the same as the height of weighted motzkin path of $\omega_{p-\operatorname{des}\left(\omega_{i}\right)}$ [19] Investigated some algebraic theoretic properties of fuzzy set on G_{p}^{\prime} using constructed membership function of fuzzy set on G_{p}^{\prime} and established the result for algebraic operators of fuzzy set on G_{p}^{\prime} which are algebraic sum, algebraic product, bounded sum and bounded difference and also constructed a relationship between the operators and fuzzy set on G_{p}^{\prime}. More recently [20] studied partition block coordinate statistics on Γ_{1}-non deranged permutations and observed that left opener bigger block $\operatorname{lobTC}\left(\omega_{i}\right)$ is equidistributed with right opener bigger block $\operatorname{robTC}\left(\omega_{i}\right)$.Hence we will in this paper show that admissible inversion set $\operatorname{Ai}\left(\omega_{i}\right)$ and admissible inversion set $\operatorname{Ai}\left(\omega_{p-i}\right)$ are disjoint we also show that $\operatorname{aid}\left(\omega_{p-1}\right)$ (admissible inversion descent) is equal to $\operatorname{des}\left(\omega_{p-1}\right)$ (descent number).

2 Preliminaries

Definition 2.1 [15]

Let Γ be a non empty set of prime cardinality $p \geq 5$ such that $\Gamma \subset N$ A bijection ω on Γ of the form

$$
\omega_{i}=\left(\begin{array}{cccccc}
1 & 2 & 3 & . & . & p \\
1 & (1+i)_{m o p} & (1+2 i)_{m o p} \cdot & . & . & (1+(p-1) i)_{\text {mop }}
\end{array}\right)
$$

is called a Γ_{1}-non deranged permutation. We denoted G_{p} to be the set of all Γ_{1}-non deranged permutations. $G_{7}=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}, \omega_{5}, \omega_{6}\right\}$ is the set of all Γ_{1}-non deranged permutations where $p=7$

By definition 2.1, G_{7} is generated as follows

$$
\begin{aligned}
& \omega_{1}=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}\right) \\
& \omega_{2}=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 3 & 5 & 7 & 2 & 4 & 6
\end{array}\right) \\
& \omega_{3}=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 4 & 7 & 3 & 6 & 2 & 5
\end{array}\right) \\
& \omega_{4}=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 5 & 2 & 6 & 3 & 7 & 4
\end{array}\right) \\
& \omega_{5}=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 6 & 4 & 2 & 7 & 5 & 3
\end{array}\right) \\
& \omega_{6}=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 7 & 6 & 5 & 4 & 3 & 2
\end{array}\right)
\end{aligned}
$$

Definition 2.2 [15]

The pair G_{p} and the natural permutation composition forms a group which is denoted as $G_{P}{ }^{\Gamma_{1}}$.This is a special permutation group which fixes the first element of Γ.

Definition 2.3 [8]
An inversion of permutation $f=\left(\begin{array}{ccrrrr}1 & 2 & 3 & . & . & n \\ f(1) & f(2) & f(3) & . & f(n)\end{array}\right)$ is a pair (i, j) such that $i<j$ and $f(i)>f(j)$.The inversion set of f, denoted as $\operatorname{Inv}(f)$, is given by
$\operatorname{Inv}(f)=\{(i, j): 1 \leq i<j \leq n$ and $f(i)>f(j)\}$, the inversion number of f, denoted by $\operatorname{inv}(f)=|\operatorname{Inv}(f)|$.

Example 2.1

For ω_{4} in $G_{5}^{\Gamma_{1}}$

$$
\begin{aligned}
& \omega_{4}=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 5 & 4 & 3 & 2
\end{array}\right) \\
& \operatorname{Inv}\left(\omega_{4}\right)=\{(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)\} \\
& \operatorname{inv}\left(\omega_{4}\right)=6
\end{aligned}
$$

Definition 2.4 [21]

An Inversion of $(i, j) \in \operatorname{Inv}(f)$ is admissible if either $f(j)<f(j+1)$ or $f(j)>f(k)$ for some $i<k<j$ which is denoted as $\operatorname{Ai}(f)$ and the number of admissible inversion f denoted by $\operatorname{ai}(f)=|\operatorname{Ai}(f)|$

Example 2.2

For ω_{3} in $G_{5}^{\Gamma_{1}}$

$$
\begin{aligned}
& \omega_{3}=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 4 & 2 & 5 & 3
\end{array}\right) \\
& \operatorname{Inv}\left(\omega_{3}\right)=\{(2,3),(2,5),(4,5)\} \\
& \operatorname{Ai}\left(\omega_{3}\right)=\{(2,3),(2,5)\} \\
& \operatorname{ai}\left(\omega_{3}\right)=2
\end{aligned}
$$

Definition 2.5 [13]
A descent of permutation $f=\left(\begin{array}{ccccc}1 & 2 & 3 & . & . \\ f(1) & f(2) & f(3) & . & f(n)\end{array}\right)$ is any positive $i<n$ (where i and n are positive integers and the current value is greater than the next), that is i is an descent of a permutation f if $f(i)>f(i+1)$. The descent set of f, denoted as
$\operatorname{Des}(f)$, is given by $\operatorname{Des}(f)=\{i: f(i)>f(i+1)\}$.The descent number of f, denoted as $\operatorname{des}(f)$, is defined as the number of descent and is given by $\operatorname{des}(f)=|\operatorname{Des}(f)|$

Example 2.3

For ω_{5} in $G_{5}^{\Gamma_{1}}$

$$
\begin{aligned}
& \omega_{5}=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 6 & 4 & 2 & 7 & 5 & 3
\end{array}\right) \\
& \operatorname{Des}\left(\omega_{4}\right)=\{2,3,5,6\} \\
& \operatorname{des}\left(\omega_{4}\right)=4
\end{aligned}
$$

3 Main Results

In this section, we present some admissible inversion results of subgroup $G_{P}^{{ }^{\Gamma_{1}}}$ of S_{p} (Symmetry group of prime order with $p \geq 5$).

Proposition 3.1.

Let $\omega_{1}, \omega_{p-1} \in G_{P}^{\Gamma_{1}}$. Then the

$$
\operatorname{ai}\left(\omega_{1}\right)=\operatorname{ai}\left(\omega_{p-1}\right)=0
$$

Proof.

Since the admissible inversion is a subset of inversion, and it is trivial that $\operatorname{inv}\left(\omega_{1}\right)=0$, hence $\operatorname{ai}\left(\omega_{1}\right)=0$. For $\omega_{p-1}=a_{1}, a_{2}, \ldots a_{p}$ it can be written as $\omega_{p-1}=1, p,(p-1), \ldots, 2$ and from this we can see there is no $a_{k}>a_{k+1}$ or $a_{k}>a_{m}$ for some $j<m<k$ in the set $\left\{(i, j): j>k\right.$ and $\left.a_{j}>a_{k}\right\}$. Hence, ai $\left(\omega_{p-1}\right)=0$

Remark 3.2

It is trivial that $\operatorname{Inv}\left(\omega_{1}\right)=\phi$ since there is no $a_{j}>a_{k}$ for $j<k$ also $\operatorname{inv}\left(\omega_{1}\right)=0$ and admissible inversion is a subset of inversion therefore $\operatorname{ai}\left(\omega_{1}\right)=0$.

Corollary 3.3

Let $\omega_{1}, \omega_{P-1} \in G_{P}^{\Gamma_{1}}$. Then the

$$
\operatorname{Ai}\left(\omega_{1}\right)=\operatorname{Ai}\left(\omega_{p-1}\right)=\phi
$$

Proof.

By Proposition 3.1

$$
\operatorname{ai}\left(\omega_{1}\right)=\operatorname{ai}\left(\omega_{p-1}\right)=0
$$

Since

$$
\operatorname{ai}\left(\omega_{1}\right)=\left|\operatorname{Ai}\left(\omega_{1}\right)\right|=0
$$

And

$$
\operatorname{ai}\left(\omega_{p-1}\right)=\left|\operatorname{Ai}\left(\omega_{p-1}\right)\right|=0
$$

Therefore

$$
\operatorname{Ai}\left(\omega_{1}\right)=\operatorname{Ai}\left(\omega_{p-1}\right)=\varnothing
$$

Proposition 3.4

Let $G_{P}{ }^{\Gamma_{1}}$ be a Γ_{1}-non derangement permutations, Then

$$
\operatorname{Ai}\left(\omega_{2}\right)=\operatorname{Inv}\left(\omega_{2}\right)
$$

Proof.

Given $\omega_{2}=a_{1}, a_{2}, \ldots a_{p}$ The inversion of ω_{i} is the set of the pairs (j, k) with $j<k$ while the admissible inversion $A i$ is a subset of inversion in which $(j, k) \in A i$ is $a_{k}<a_{k+1}$ or $a_{k}<a(m)$
for some $j<m<k$. so $\left\{\frac{p+3}{2}, \ldots p\right\}$ are the members of a_{k} and are less than their respective
a_{k+1} except a_{p} therefore they are all in A_{i} except a_{p} but a_{p} takes the inversion $\left(\frac{p+1}{2}, p\right)$. Hence it is also admissible inversion of ω_{2} and by embedding the A_{k} ' s and A_{p} the result follows

Remark 3.5

From Proposition 3.4 we can deduce that $\operatorname{ai}\left(\omega_{2}\right)=\operatorname{inv}\left(\omega_{2}\right)$ and also that $\operatorname{ai}\left(\omega_{2}\right)$ is equi-distributed with $\operatorname{inv}\left(\omega_{2}\right)$

The admissible inversion descent of permutation f is the sum of the cardinality of admissible inversion and the cardinality of descent that is $\operatorname{aid}(f)=\operatorname{ai}(f)+\operatorname{des}(f)$

Example
For ω_{3} in $G_{5}^{\Gamma_{1}}$

$$
\begin{aligned}
& \omega_{3}=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 4 & 2 & 5 & 3
\end{array}\right) \\
& \operatorname{Inv}\left(\omega_{3}\right)=\{(2,3),(2,5),(4,5)\} \\
& \operatorname{Ai}\left(\omega_{3}\right)=\{(2,3),(2,5)\} \\
& \operatorname{ai}\left(\omega_{3}\right)=2 \\
& \operatorname{Des}\left(\omega_{3}\right)=\{2,4\} \\
& \operatorname{des}\left(\omega_{3}\right)=2 \\
& \operatorname{aid}\left(\omega_{3}\right)=2+2=4
\end{aligned}
$$

Proposition 3.6

Let $\omega_{p-1} \in G_{P}^{\Gamma_{1}}$. Then the

$$
\operatorname{aid}\left(\omega_{p-1}\right)=\operatorname{des}\left(\omega_{p-1}\right)
$$

Proof.

From proposition 3.1 We have that the $\operatorname{ai}\left(\omega_{p-1}\right)=0$, and recall the $\operatorname{aid}\left(\omega_{i}\right)=\operatorname{ai}\left(\omega_{i}\right)+\operatorname{des}\left(\omega_{i}\right)$, hence the result follows.

Remark 3.7

The above Proposition implies that $\operatorname{aid}\left(\omega_{p-1}\right)$ is equi-distributed with $\operatorname{des}\left(\omega_{p-1}\right)$, and also for ω_{1} its descent number i.e. $\operatorname{des}\left(\omega_{1}\right)=0$ and $\operatorname{ai}\left(\omega_{1}\right)=0$. This implies that $\operatorname{aid}\left(\omega_{1}\right)=\operatorname{des}\left(\omega_{1}\right)=0$.

Proposition 3.8

Let $G_{P}^{{ }^{\Gamma_{1}}}$ be a Γ_{1}-non derangement permutations, Then

$$
A i\left(\omega_{i}\right) \cap A i\left(\omega_{p-i}\right)=\varnothing
$$

Proof.

Given $\omega_{i}=a_{1} a_{2} \ldots a_{p-1} a_{p}$ the $\omega_{p-i}=a_{1} a_{p} a_{p-1} \ldots a_{2}$. The inversion of ω_{i} is the set of the pairs (j, k) with $j<k$ such that $a_{j}>a_{k}$, but looking at ω_{p-1} and restricting a_{1} it is the reverse of ω_{i}, therefore their inversion are disjoint. But admissible inversion is a subset of inversion. Hence,

$$
A i\left(\omega_{i}\right) \cap A i\left(\omega_{p-i}\right)=\varnothing
$$

Corollary 3.9

Suppose that $G_{P}{ }^{\Gamma_{1}}$ is Γ_{1}-non derangement permutations, Then

$$
A i\left(\omega_{p-1}\right)=\bigcap_{i=1}^{p-1} A i\left(\omega_{i}\right)=\varnothing
$$

Proof.

From proposition 3.8 $\operatorname{Ai}\left(\omega_{i}\right) \cap \operatorname{Ai}\left(\omega_{p-1}\right)=\varnothing$ So, in this case we want to show for any $G_{P}{ }^{\Gamma_{1}}$ there exist ω_{i} and ω_{p-i} since their intersection is \varnothing, then intersection of empty set with any set is also empty set, we already know that $G_{P}{ }^{\Gamma_{1}}$ is defined for p is prime and $p \geq 5$, and we donate each set $G_{P}{ }^{\Gamma_{1}}=\left\{\omega_{1}, \ldots, \omega_{p-1}\right\}$, from this we can see that for any $G_{P}^{\Gamma_{1}}$ we have atleast ω_{1} and ω_{p-1}.

Proposition 3.10

Let $\omega_{i} \in G_{5}^{\Gamma_{1}}$. Then the

$$
\operatorname{inv}\left(\omega_{p-1}\right)=\sum_{i=1}^{p-1} a i\left(\omega_{i}\right)+1
$$

Proof.

Given $\omega_{p-1} \in G_{5}^{\Gamma_{1}}$, the $\operatorname{inv}\left(\omega_{p-1}\right)=2 p-4$., we already know that $G_{5}^{\Gamma_{1}}=\left\{\omega_{1}, \ldots, \omega_{4}\right\}$, where $\operatorname{ai}\left(\omega_{1}\right)=\operatorname{ai}\left(\omega_{p-1}\right)=0$ and $\operatorname{ai}\left(\omega_{2}\right)=p-2$ while $\operatorname{ai}\left(\omega_{3}\right)=p-3$, summing them we have

$$
\begin{aligned}
& \sum_{i=1}^{p-1} a i\left(\omega_{i}\right)=0+(p-2)+(p-3)+0=2 p-5 \\
& \sum_{i=1}^{p-1} a i\left(\omega_{i}\right)+1=2 p-5+1=2 p-4 \\
& =\operatorname{inv}\left(\omega_{p-1}\right)
\end{aligned}
$$

4 Conclusion

This paper has provided very useful theoretical properties of this scheme called Γ_{1}-non deranged permutations in relation to the admissible inversion. We have shown that admissible inversion set $\operatorname{Ai}\left(\omega_{i}\right)$ and admissible inversion set $\operatorname{Ai}\left(\omega_{p-i}\right)$ are disjoint we also shown that $\operatorname{aid}\left(\omega_{p-1}\right)$ (admissible inversion descent) is equal to $\operatorname{des}\left(\omega_{p-1}\right)$ (descent number).

Further Research

G_{p} defined above is subgroup of extra ordinary group of group theory. One can find number of subgroups of order 4 using [22].

Competing Interests

Authors have declared that no competing interests exist.

Acknowledgement

The Authors are very grateful to the referees for their valuable suggestion and opinions.

References

[1] Euler L. Institutiones Calculi differntialis in "opera omnia series prime Volx, Teubner,Leipzig; 1913.
[2] MacMahon PA. Combinatory Analysis, Cambridge University Press(reprinted by Chesea,New York). 1915,1955;1 and 2.
[3] Foata D. Distribution Euleriennes et Mahoniennes sur le group des permutations, in Higher Combinatorics (M.Algner,Ed). Reidel Boston. 1976;27-49.
[4] Foata D. Rearrangements of words in Combinatorics on words (M. Lothaire,Ed) Encyclopedia of Mathematics and its Applications. G-C rota.Ed,Cambridge University press, Cambridge, UK. 1984;17.
[5] Rawlings D. Permutation and Multipermutation Statistics .European Journal of Combinatorics. 1981;2:67-78.
[6] Simion S, Stanton D. Specialization of generalized laguerre polynomials SIAM J. Math. Anal. 1994;25(2):712-719.
[7] Stanley R. Binomial Poset,Mobius inversion and permutation Enumeration, Journal Combinatorics Theory Series A. 1976;20:712-719.
[8] Ibrahim AA, Ejima O, Aremu KO. On the Representation of Γ_{1}-non deranged permutation group $G_{P}{ }^{\Gamma_{1}}$ Advance in Pure Mathematics. 2016;6:608-614.
[9] Garba AI, Ejima O, Aremu KO, Hamisu U. Non Standard Young tableaux of Γ_{1}-non deranged permutations group $G_{P}{ }^{\Gamma_{1}}$, Global Journal of Mathematical Analysis. 2017;5(11):21-23.
[10] Aremu KO, Ibrahim AH, Buoro S, Akinola FA. Pattern Popularity in Γ_{1}-non deranged permutations: An: Algebraic and Algorithmic Approach.Annals. Computer Science Series. 2017;15(2):115-122.
[11] Aremu KO, Ejima O, Abdullahi MS. On the Fuzzy Γ_{1}-non deranged permutations group $G_{P}{ }^{\Gamma_{1}}$, Asian Journal of Mathematics and Computer Research. 2017;18(14):152-157.
[12] Ibrahim M, Ibrahim AA, Garba AI, Aremu KO. Ascent on Γ_{1}-non deranged permutation group $G_{P}{ }^{\Gamma_{1}}$ International Journal of Science for Global Sustainability. 2017;4(2):27-32.
[13] Ibrahim M, Garba AI. Exedance on Γ_{1}-non deranged permutations, proceedings of Annual National Conference of Mathematical Association of Nigeria (MAN). 2018;197-201.
[14] Ibrahim M, Garba AI. Descent on Γ_{1}-non deranged permutation group, Journal of Mathematical Association of Nigeria ABACUS. 2019;46(1):12-18.
[15] Garba AI, Ibrahim M. Inversion and Major index on Γ_{1}-non deranged permutations International Journal of Research and Innovation in Applied Science. 2019;4(10):122-126.
[16] Ibrahim M, Muhammd M. Standard Representation of set partition of Γ_{1}-non deranged permutations. International Journal of Computer Science and Engineering. 2019;7(11):79-84.
[17] Ibrahim M, Ibrahim BA. Permutation Graphs with Inversion on Γ_{1}-non deranged permutations. IOSR Journal of the Mathematics. 2019;15(6):77-81.
[18] Aremu KO, Garba AI, Ibrahim M, Buoro S. Restricted bijectios on Γ_{1}-non deranged permutations Asian Journal of Mathematics and Computer Research. 2019;25(8):462-477.
[19] Ibrahim AA, Garba AI, Alhassan MJ, Hassan A. Partition block coordinate statistics on Γ_{1}-non deranged permutations, IQSR Journal of Mathematics. 2021;17(3):58-61.
[20] Magami MS, Ibrahim M. Some Algebraic theoretic properties on Γ_{1}-non deranged permutations Quest Journal of Research in applied Mathematics. 2021;7(9):28-33.
[21] Burstein A. On the distribution of some Euler-Mahonian Statistics, arXiv: 1402.3619v1[math.co]. 2014;1-9.
[22] Yogish Kumar, Amitsehgal. Number of subgroups of order 4 in S_{n}, International Journal of Scientific Research. 11(2);351-52.
© 2021 Magami and brahim; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
https://www.sdiarticle4.com/review-history/74367

[^0]: *Corresponding author: Email: muhammad.ibrahim@udusok.edu.ng;

