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Abstract 

 
This paper introduces a new three parameter Rayleigh distribution which generalizes the Rayleigh 

distribution. The new model is referred to as Extended Rayleigh (ER) distribution. Various mathematical 

properties of the new model including ordinary and incomplete moment, quantile function, generating 

function are derived. We propose the method of maximum likelihood for estimating the model parameters. A 

real life data set is used to compare the flexibility of the new model with other models. 
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1 Introduction 

 
In several areas such as survival analysis and other applied area of statistics, there is strong need to develop 

more flexible classical distributions. Based on this assertion, different methods of generating new families of 

distributions have been established. This includes beta-G by Eugene et al. (2002), skew family by Azzalini 
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(1985), Cordeiro and de Castro (2011) studied Kumaraswamy-G family of distribution, Kumaraswamy 

transmuted-G by Afify et alo (2016), the odd Lindley-G family of distributions by Silva, Percontini, de Brito, 

Ramos, Venancio and Cordeiro [1], exponentiated transmuted-G family by Merovci, Alizadeh, Yousof and 

Hamedani [2], the odd-Burr generalized family by Alizadeh, Cordeiro, Nascimento, Lima and Ortega [3], the 

transmuted Weibull-G family by Alizadeh, Rasekhi, Yousof and Hamedani [4], the type I half logistic family by 

Cordeiro, Alizadeh and Diniz Marinho [5], the Zografos–Balakrishnan odd log-logistic family of distributions 

by Cordeiro, Alizadeh, Ortega and Serrano [6], logistic-X by Tahir, Cordeiro, Alzaatreh, Mansoor and Zubair 

[7], a new Weibull-G by Tahir Mansoor, Cordeiro, Alizadeh and Hamedani [8] and many more. According to 

Kharazmi and Saadatinik (2018), the hyperbolic Sine (HS) family with cumulative density function given by 

 

     
   

       
                                                                                                                                  

 

And the probability density function (pdf) is  

 

     
    

       
                                                                                                                                    

 

Where,      and      are the cdf and pdf for any random variable, respectively and the hyperbolic sine 

function          is defined as 

 

         
                                                                                                                                                 

 

and using the series expansion         takes the following form 

 

         
     

       

 

   

                                                                                                                                            

 

In our work, we take      is the CDF of the Rayleigh distributiuon and      its pdf. The cdf of Rayleigh 

distribution is given by 

 

                                                                                                                                                          

 

Where   is a positive shape parameter representing the characteristics of the distribution. 

 

The associated pdf is  

 

                                                                                                                                                                    

 

2 The New Model 

 
This section contributes the representation of ER distribution. The cdf, reliability, hazard   rate, cumulative 

hazard rate functions are obtained and discussed analytically. As well as the asymptotic behavior of ER 

distribution. 

 

2.1 Mathematical representations 

 
By putting equation (5) and (6) into (1) and (2), then the ER cdf and pdf will be obtained as 

 

     
   

       
                                                                                                                             

 

and 
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The survival and the hazard rate functions are  

 

       
   

       
                                                                                                                     

 

     

    

       
                                   

  
   

       
                      

                                                                                 

 

in addition, the cumulative hazard rate function corresponding to (10) is 

 

                   
   

       
                                                                                

 

The graph of the     of ER distribution is given in Figs. 1 and 2 as drawn below 

 

 
 

Fig. 1. Graph of the density function of Extended Rayleigh distribution 

 

 
 

Fig. 2. Graph of the density function of Extended Rayleigh distribution 
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Fig. 3. Graph of the hazard function of Extended Rayleigh distribution 

 

This implies that using Taylor series given in (3) and (4), the pdf of ER distribution can be written as 

 

     
    

       
    

     

       
      

    

 
                                                                       

    

   

 

   

 

 

2.2 Quantile function 

 
The quantile function (qf) say   , of   is the real solution of the following equation        . Then we can 

write 

 

  
   

       
                                                                                                                                 

 

By making   the subject of the formula we obtain the      quantile for the ER distribution as 

 

     
 

  
             

 

 
                           

 
  

                                                     

 

By putting       in equation (14) gives the median of  . Simulating the ER distribution is straightforward.  

 

If   is uniform variate on the unit interval      , then the random variable      at     follows (4).  

 

3 Moments and Incomplete Moment 

 
3.1      raw moment 

 
Moment of a distribution plays a very important role in statistical analysis. They are used for estimating 

characteristics of a distribution such as kurtosis, skewness and measures of central tendency and measures of 

dispersion. The     moment, denoted by  
 
, of X is given by 

 

       
 
          

 

  

                                                                                                                                   

 

Putting equation (12) in (15) 
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Taking               
 

 
  

      
 

  
    

 
     

  

      
 

  
 and substitute in equation (16), we have the     

moment of  Extended Rayleigh distribution given by 

 

      
    

       
  

     

       
      

    

 
                        

    

   

 

   

                                        

 

3.2 Incomplete moment 

 
The incomplete moment is used to estimate the median deviation, mean deviation and measures of inequalities 

such as the Lorenz and Bonferroni curves. The incomplete moment of a distribution is given by 

 

                             
 

 

                                                                                                                                 

 

Putting equation (12) in (18), then we have 

 

     
    

       
    

     

       
      

    

 
 

    

   

 

   

                  
 

 

                                        

 

Taking               
 

 
  

      
 

  
    

 
     

  

      
 

  
 and substitute in equation (19), we have the     

incomplete moment of   

 

     
    

       
  

     

       
      

    

 
        

 
                        

    

   

 

   

                         

 

3.3 Moment generating functions 

 
Moment generating function is a very useful function that can be used to describe certain properties of the 

distribution. It can be used to obtain moments of a distribution. The moment generating function of    

distribution is obtained as follows: 

 

the moment generating function of a random variable   is given by 

 

                       

 

  

                                                                                                                          

 

Where      is given in (12). Using series expansion for     given by 

 

     
  

  
  

 

   

                                                                                                                                                            

 

Using (22), we can re-write equation (21) as follows 
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Putting equation (17) in (23), we have an expression for the moment generating function of    distribution as 
 

        
  

  

    

       
     

       
      

    

 
                        

    

   

 

     

                               

 

4 Estimation of the Parameters of ER Distribution 

 
The likelihood function of ER distribution is given by  
 

       
    

       
                             

 

   

                                                                           

 

The log-likelihood function                of the ECTE distribution is given by 
 

       
    

       
         

 

   

         

 

   

                      

 

   

                               

 

4.1 Application 
 

The Extended Rayleigh distribution is used to model a life time data and compared with other competing 

distributions such as the Exponential distribution (E), Gumbel type-2 (GT) distribution and the Exponentiated 

Gumbel type-2 (EGT) distribution. The data represents the survival times (in days) of 72 guinea pigs infected 

with virulent tubercle bacilli, observed and reported by Bjerkedal et al. [9]. The data obtained is given as: 
 

0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08, 1.09, 

1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 

1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 

2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55.  
 

Exploratory Data Analysis (EDA) is given in Table 1 which clearly shows that the data is positively skewed and 

under-dispersed. Estimates of the parameters of the Extended Rayleigh and Rayleigh distribution, Akaike 

information criterion (AIC), consistent Akaike information criterion (CAIC), Bayesian information criterion 

(BIC), Crammer Von-misses ( ) and Anderson Darling (A*) statistic are also given in Tables 1 and 2. Fig. 4 

represents the TTT plot of the pig data which shows that the data exhibits an increasing failure rate and Fig. 5 

represents the box plots for the data. 
 

 
 

Fig. 4. Graph of Total Time of Test plot (TTT plot) of pig data 
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Fig. 5. Boxplot for pig data 

 

Table 1. Data analysis (EDA) of survival time of pigs 

 

                                                    

                                                         

 

Table 2. MLEs, standard errors (in parenthesis) and the AIC, BIC and CAIC for Pigs Data 

 

                              
           

           
       
           

                                              

         
         

  
    

                                              

E 0.1067 

         
  

    
113.037 228.074 230.351 228.131 

 
              

GT 1.176O 

         
1.176O 

         
118.167 240.334 244.887 240.508 3.3671 0.6001 

 

5 Conclusion 

 
In this work, we have introduced and studied a new model called Extended Rayleigh distribution based on 

hyperbolic sinh generator. The structural and reliability properties of this distribution have been studied and 

inferences on parameters have also been examined. The estimation of parameters is carried out by maximum 

likelihood estimate of the Extended Rayleigh model parameters. The application of the Extended Rayleigh 

distribution shows that it could provide a better fit than its sub-model. 
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