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Abstract 
 

The problems of delay-dependent robust stability and stabilization for a class of uncertain neutral systems are 
investigated in this paper. At first, by constructing a new Lyapunov functional and using the Lyapunov 
stability theory, a new delay-dependent condition which renders the system with no external disturbance and 
input to be asymptotically stable is obtained and given by a linear matrix inequality. Then, based on the 
obtained condition, a state feedback stabilize law is designed, which guarantees closed-loop neutral systems 
are asymptotically stable for all the permitted uncertainties when the external disturbance is naught, and it 
can also guarantee the closed-loop systems have H

 performance under the external disturbance. The model 

of neutral systems with both the uncertainty and the disturbance discussed in this paper has rarely been 
considered before. 
 

 

Keywords: Neutral system; delay-dependent; robust stability; H state feedback; linear matrix inequality. 
 

1 Introduction  
 
Time delay phenomenon exists widely in all kinds of systems. At the same time, due to the aging of system 
components, parameter disturbance and other reasons, all kinds of uncertainties of the system inevitably exist, 
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which leads to the deterioration of system stability performance. In order to study and solve these problems, 
robust control theory as the main research method has attracted more and more attention of scholars. Neutral 
time-delay system is a special case, which contains not only the time-delay term of the system state, but also the 
time-delay term of the system state derivative. In recent years, the research on the stability and stabilization of 
neutral systems has aroused the interest of many scholars [1-11]. At present, the stability criteria of neutral 
systems can be divided into two categories: delay- dependent and delay independent. The delay-dependent 
stability condition contains the information of the delay constant, while the delay independent stability condition 
is independent of the delay constant. In reference [1-2], the stability of a class of neutral systems was studied 
based on the linear inequality technique. The research in [7] shows that when the delay constant is small, the 
delay independent stability condition usually has strong conservatism, while the delay-dependent stability 
criterion has weak conservatism. Therefore, the delay-dependent stability criteria for neutral systems are more 
concerned [2,3,6-8]. In reference [3], the model transformation was introduced to study a class of uncertain 
neutral systems, and the delay-dependent robust stability conditions are obtained, However, this method needs 
to define some quadratic cross terms which makes the conditions conservative. In reference [7], the "free weight 
matrix method" is proposed to study the delay-dependent stability of neutral time-delay systems. The delay-
dependent stability conditions with less conservatism are obtained, and the state feedback stabilization law is 
designed. However, the research in reference [8] shows that the introduction of free weight matrix does not 
always reduce the conservatism of the obtained conditions. In addition, reference [6-8] did not consider the 
influence of external interference. The reference [9] investigated the problem of the delay-dependent stability of 
neutral systems with mixed-delay and time-varying structured uncertainties. It obtains some less conservative 
criteria by combining the free-weighting matrix technique and Wirtinger-based integral inequality technique. 
The reference [10] concerned with the exponential stability problem for uncertain neutral systems with mixed 
time-varying delays and nonlinear perturbations. It considers the upper and lower bounds of interval time-
varying delays when constructing Lyapunov functional. The reference [11] discussed the delay-dependent 
stability for neutral singular systems and developed a novel augmented Lyapunov-Krasovskii functional 
including less decision variables.  
 
In this paper, by using Lyapunov stability theory and linear matrix inequality technique to construct a new 
Lyapunov functional, delay-dependent stability conditions for a class of linear uncertain non-forced neutral 
systems are obtained based on the properties of positive definite matrix. The maximum delay constant to ensure 
the robust stability of the system can be found by Matlab toolbox. Moreover, a state feedback control law is 

designed to make the closed-loop system robust and stable. It is further proved that the system satisfies H

norm boundedness when the external disturbance is not zero. Compared with those previous studies, this paper 

considers not only the stability problem, but also the stabilization problem and the robust H performance of the 

system for external disturbances. In this paper, the model of neutral systems with both the uncertainty and the 
disturbance is considered, which has rarely been discussed before. In particular, a new state feedback stabilize 
law is designed. The current research is limited to theoretical analysis and has not found a reasonable 
application, which will be our future work. 
 

2 System Description and Preliminaries 
 
Consider the following linear neutral uncertain time-delay systems: 
 

1 1 1

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ),

( ) 0, [ , 0],

x t Jx t h A A x t A A x t h Bu t B w t

z t Cx t C x t h

x t t h

          


  
    

 

                            (1) 

 

where ( ) nx t R is the state vector of the system, ( ) mu t R is the control input vector of the system, 

2( ) [0, )w t L  is the external disturbance, ( ) pz t R is the controlled output vector, 1 1 1, , , , , ,A A B B J C C are 

matrices with proper dimensions, 0h  is a delay constant. 1,A A   are unknown uncertain terms, and have the 

corresponding dimension. Assuming that it has the following form:  
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   1 0 1( ) .A A E t F F                                                                                                                     (2) 

 

where 1 2, ,E F F are matrices with proper dimensions, ( )t is an unknown time-varying function matrix, 

satisfying the following conditions: 
 

( ) ( )T t t I   , t R                                                                                                                               (3) 

 

When ( ) 0, ( ) 0u t w t  ，the system (1) without control input and external interference is obtained as follows: 

 

1 1

1

( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ),

( ) 0, [ ,0].

x t Jx t h A A x t A A x t h

z t Cx t C x t h

x t t h

        


  
    

 

                                                                           (4) 

 
The following lemma will be used in the following discussions and proofs. 
 

Lemma 1 [4]. (Schur complement lemma) Given constant matrices 1 2 3, , ,S S S  and 1 1 2 2,0 ,T TS S S S    then

1
1 3 2 3 0TS S S S  holds if and only if 1 3

3 2

0.
TS S

S S

 
 

 
 

Lemma 2 [7]. Gives matrices ,TQ Q H and E with proper dimensions, then ( )Q HF t E ( ) 0T T TE F t H 

holds for any ( )F t satisfying ( ) ( )TF t F t I if and only if there exists a constant 0   such that 
1 0T TQ HH E E     . 

 

3 Robust Stability of Systems 
 
In this section, we will give a sufficient condition for the delay-dependent robust stability of the system (4) by 

using linear matrix inequalities. For the convenience of discussion, note that
1 1 1,A A A A A A      . By the 

system (4), We can get
1( ) 0 ( ) ( ) ( ) ( )Y t Jx t h x t Ax t A x t h        . Thus, ( ) ( ) 0Tx t MY t   holds for any 

matrix 0M  with appropriate dimension. 
 

Theorem 1. Assume that 1J  , if there is a positive real number 0  , symmetric positive definite matrices

1 2 330, 0, 0, 0P Q Q X    and a semi-positive definite matrix  

 

11 12 13

22 23

33

* 0

* *

X X X

X X X

X

 
   
    

 
such that the following inequalities hold: 
 

11 13

22 1

33

2

0

*

* * 0
0

* * * 0

* * * *
2

，

TA P PE

PA PJ PE

JPE

Q

I


  
 

 
 

   
 

 
 
 

                                                                                            (5) 
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where       
 

11 1 11 13 13 0 0

22 33 2

13 1 12 13 23

33 1 1 1 22 23 23 1 1

,

2 ,

,

( ) ，

T T T

T T

T T T T

A P PA Q hX X X F F

P hX Q

A PJ PA hX X X

A PJ J PA Q hX X X F F





       

    

      

        

                                                             (6) 

 
then the system (4) is robust stable for all uncertainties satisfying (2) and (3). 
 
Proof: For the system (4), the Lyapunov functional is constructed as follows: 
 

1 2 3 4 ,V V V V V   
 

 
where  
 

1

2 1 2

0

3 33

4
0

( ( ) ( )) ( ( ) ( )),

( ) ( ) ( ) ( ) ,

( ) ( ) ,

,

T

t t
T T

t h t h

t
T

h t

t
T

h

V x t Jx t h P x t Jx t h

V x s Q x s ds x s Q x s ds

V x s X x s dsd

V X dsd









  

 

 



    

 





 

 

 

 

 
 

 
and  
 

11 12 13

22 23

33

( ( ), ( ), ( )) , * .

* *

T T T T

X X X

x x h x s X X X

X

  

 
     
  

  

 

Derivation of V along the trajectory of system (4) is as follows: 
 

 

 
where  
 

1 ( ( ) ( )) ( ( ) ( )) ( ( ) ( )) ( ( ) ( )).T TV x t Jx t h P x t Jx t h x t Jx t h P x t Jx t h               

By 
1( ) 0 ( ) ( ) ( ) ( ),Y t Jx t h x t Ax t A x t h         we can get  

1

1 1

1

( ( ) ( )) ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))

( ) ( ) ( ) ( ),

( ( ) ( )) ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))

( ) ( ( ) ( ) ( ) ( ))

T T

T T

T T

T

V x t Jx t h P x t Jx t h x t Jx t h P x t Jx t h

x t PY t Y t Px t

Ax t A x t h P x t Jx t h x t Jx t h P Ax t A x t h

x t P Jx t h x t Ax t A x t h

          



          

     

    

 

  
1( ( ) ( ) ( ) ( )) ( )TJx t h x t Ax t A x t h Px t      

 

1

1 1 1

1

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (

T T T T T T T T

T T T T T T

T T T T T T

x t A P PA x t x t A PJx t h x t h J PAx t x t h A Px t

x t PA x t h x t h A PJ J PA x t h x t PJx t h x t Px t

x t PAx t x t PA x t h x t h J Px t x t Px t x

        

        

     

   

     

1

) ( )

( ) ( ).

T

T T

t A Px t

x t h A Px t









 

2 1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).T T T TV x t Q x t x t h Q x t h x t Q x t x t h Q x t h             

1 2 3 4 .V V V V V       
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3 33 33( ) ( ) ( ) ( ) .
t

T T

t h
V hx t X x t x s X x s ds


        

1311 12

4

2312 22

13 23 33

11 13 13 12 13

( )
[ ( ) ( )] [ ( ) ( )] [ ( ) ( )]

( )

( )
[ ( ) ( )] ( ) ( )

( )

( )( ) ( ) ( )(

T T T T

T

t
T T T T T

t h

T T T

XX X x t
V h x t x t h x t x t h x t x t h

XX X x t h

x t
x t x t h X X x s X x s ds

x t h

x t hX X X x t x t hX X



    
              

 
       

    





 

23 12 13

23 22 23 23 33

) ( ) ( )(

) ( ) ( )( ) ( ) ( ) ( ) .

T T T T

t
T T T

t h

X x t h x t h hX X

X x t x t h hX X X x t h x s X x s ds


     

        

 

For the convenience of discussion, define ( ) ( ( ), ( ), ( ), ( )) ,T T T T Tt x t x t x t h x t h


     then ( ) ( ),TV t t    

where 
 

11 13

33 2 1

33

2

0

* 2
,

* * 0

* * *

TA P

P hX Q PA PJ

Q

  
 

    
 
 

    
 
and  
 

11 1 11 13 13

13 1 12 13 23

33 1 1 1 22 23 23

,

,

( ) .

T T

T T

T T T

A P PA Q hX X X

A PJ PA hX X X

A PJ J PA Q hX X X

      

      

       

 

 

According to the Lyapunov stability theory, a sufficient condition for the system (1) with ( ) 0, ( ) 0u t w t  , 

that is the system (4), to be robust asymptotically stable is that there exist real positive definite matrices 

1 2 33, , ,P Q Q X and a semi-positive definite symmetric matrix 0X   such that  

 

0                                                                                                                                                         (7) 
 

Note that there are uncertainties ,A B   in the matrix elements, so we should eliminate the uncertainties to 

obtain linear matrix inequalities. By substituting uncertainty conditions (2), (3) into (7), we can get 
 

0 0,T                                                                                                                                     (8) 

 
where  
 

011 013

33 2 1
0

033

2

0

* 2
,

* * 0

* * *

TA P

P hX Q PA PJ

Q

  
 

    
 
 

    
 

With 
 

011 1 11 13 13

013 1 12 13 23

033 1 1 1 22 23 23

,

,

( ) ,

T T

T T

T T T

A P PA Q hX X X

A PJ PA hX X X

A PJ J PA Q hX X X

      

      

       
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and 
 

0

1

0 0 0 0 0

0 0 0 0 0 0
,

0 0 0 0 0

0 0 0 0 0 0 0 0

T T

PE PE F

PE PE

J PE J PE F

   
   
     
    
   
   

 

 

with { ( ), ( ), ( ), ( )}.diag t t t t       From Lemma 2, we can see that (8) is equivalent to 

 

0 0

1
0

1 1

0 0 0 0 0 0

0 0 0 0 0 0 0 0
0,

0 0 0 0 0 0

0 0 0 0 0 0 0 0

T

T

F F

F F
  

   
   
       
   
   
     

 
where  
 

0 0

0 0
.

0 0

0 0 0 0

T T

PE PE

PE PE

J PE J PE

 
 
  
  
 
   

 
By simplification and arrangement, we can obtain  
 

1
11 13

1
22 1

33

2

2 0

* 2
0

* * 0

* * *

，

T T

T

A P PEE P

PA PEE PJ PJ

Q









   
 

   
 
 

  

 




 

 
where 
 

1
11 1 11 13 13 0 0

1
22 33 2

1
13 1 12 13 23

1
33 1 1 1 22 23 23 1 1

2 ,

2 2 ,

2 ,

( ) 2 .

T T T T

T

T T T

T T T T T T

A P PA Q hX X X F F PEE P

P hX Q PEE P

A PJ PA hX X X PEE PJ

A PJ J PA Q hX X X F F J PEE PJ

 





 









        

     

       

         









 

 
According to Schur complement lemma, the above formula can be changed into: 
 

11 13

22 1

33

2

0

*

* * 0
0.

* * * 0

* * * *
2

T

T

A P PE

PA PJ PE

J PE

Q

I


  
 

 
  

 
 

 
 
 

                                                                                               (9) 
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where  
 

11 1 11 13 13 0 0

22 33 2

13 1 12 13 23

33 1 1 1 22 23 23 1 1

,

2 ,

,

( ) .

T T T

T T

T T T T

A P PA Q hX X X F F

P hX Q

A PJ PA hX X X

A PJ J PA Q hX X X F F





       

    

      

        

 

 
Therefore, the theorem is proved. Actually, the linear matrix inequalities (9) provide a sufficient condition for 
the system (4) to be robust asymptotically stable. 
 

4 Robust and Stabilization 
 
The system (1) is said to be robustly stabilizable if it has state feedback control ( ) ( )u t Kx t  when ( ) 0w t   

such that the following closed-loop system is stable, 
 

1 1( ) ( ) ( ) ( ) ( ) ( ),

( ) 0, [ ,0].

x t Jx t h A A BK x t A A x t h

x t t h

         

   

 
                                                               (10) 

 

In this section, we mainly study the robust robustness of the system (1) under the condition ( ) ( )u t Kx t , and 

give the design method of the state feedback law, that is, find out the state feedback gain matrix to make the 
closed-loop system (10) asymptotically stable. 

 

Theorem 2. When ( ) 0w t  , the system (1) is stable under the state feedback control ( ) ( )u t Kx t , if there are 

positive real numbers 0, 0,    symmetric positive definite matrix 1 2 330, 0, 0, 0P Q Q X    and semi 

positive definite matrix 

11 12 13

22 23

33

* 0

* *

X X X

X X X

X

 
   
  

 such that the following inequalities are established, 

 

11 13

22 1

33

2

0 2

1
*

2

1
* * 0

02

* * * 0 0

* * * * 0
2

* * * * *

，

T

T T

A P PE PB

PA PJ PE PB

J PE J PB

Q

I

I





  
 
 
 
 
   
   
 

 
 

 
 
  


 

where 11 22 13 33, , ,     are the same as that in (6), and the state feedback control law is given by 1 TK B P 

. 
Proof: Choose the Lyapunov function 
 

  1 2 3 4 ,V V V V V           
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where 
 

1

2 1 2

0

3 33

4
0

( ( ) ( )) ( ( ) ( )),

( ) ( ) ( ) ( ) ,

( ) ( ) ,

.

T

t t
T T

t h t h

t
T

h t

t
T

h

V x t Jx t h P x t Jx t h

V x s Q x s ds x s Q x s ds

V x s X x s dsd

V X dsd









  

 

 



    

 





 

 

 

 

 
 

 

Let 1 1 1,A A A BK A A A        . By substituting 1 TK B P  into the closed-loop system (10) and 

applying the conclusion of Theorem 1, we can obtain the following sufficient condition for the system (10) to be 
robust asymptotically stable: 
 

11 12 13

22 23

33

2

0

*
0

* * 0

* * *

PJ

Q

   
    
 
 

 

                                                                                                               (11) 

 

where 
 

1 1
11 1 11 13 13 0 0

1 1
12

1 1
13 1 12 13 23

1
22 33 2

1
23 1

33 1 1 1

2 2 ,

2 ,

2 ,

2 2 ,

2 ,

( )

T T T T T

T T T

T T T T

T

T

T T

A P PA Q PBB P hX X X F F PEE P

A P PBB P PEE P

A PJ PA PBB PJ hX X X PEE PJ

P hX Q PEE P

PA PEE PJ

A PJ J PA Q hX

  

 

 





 

 

 





         

   

        

     

  

      1
22 23 23 1 1 2 .T T T TX X F F J PEE PJ     

 

 

On the other hand, according to Schur complement lemma, (11) is equivalent to 
 

11 12 13

1 1
22 23

1
33

2

0

1 1
*

2 2
0.

1
* * 0

2

* * *

T T

T T

PBB P PBB PJ PJ

J PBB PJ

Q

 



 



   
 
    
 

 
  
 
  

                                                                (12) 

 

Due to 0  , it is easy to know that 
 

1 1

1 1

1 1

2 2 0.
1 1

2 2

T T

T T T T

PBB P PBB PJ

J PBB P J PBB PJ

 

 

 

 

 
 

 
 
    

 
Thus, the establishment of (13) can deduce the establishment of (12). Therefore, the closed-loop system (10) is 

robust and asymptotically stable. That is to say, when ( ) 0w t  , the system (1) is robust and stable under the 

control 1( ) ( )Tu t B Px t  . 
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Based on the above theorem, we will show that for any nonzero external disturbance 2( ) [0, )w t L   and a given 

scalar 0,   
2 22

2 2
( ) ( )z t w t  holds for the system (1) under the control 1( ) ( )Tu t B Px t  . 

 

Theorem 3. For a given constant 0,   there is a state feedback control ( ) ( )u t Kx t  for the system (1) such 

that when ( ) 0w t  , the closed-loop system is robust and stable, and when ( ) 0w t  , 
2 22

2 2
( ) ( )z t w t  holds, 

whose sufficient condition is that there exist  positive constants 0, 0,    symmetric positive definite 

matrices 1 20, 0, 0,P Q Q   33 0，X   and a positive semidefinite matrix 
 

11 12 13

22 23

33

* 0

* *

，

X X X

X X X

X

 
   
    

 

such that  
 

11 13 1

22 1 1

33 1

2

2

0 2

* 2

1
* * 0

2

* * * 0 0 0

* * * * 0 0

* * * * * 0
2

* * * * * *

，

T

T T T

A P PB PE PB

PA PJ PB PE PB

J PB J PE J PB

Q

I

I







  
 

 
 
    
 
    
 
 
 
 
  

                                                                    (13) 

 
where 
 

11 1 11 13 13 0 0

13 1 1 12 13 23

22 33 2

33 1 1 1 1 1 22 23 23 1 1

,

,

2 ,

( ) .

T T T T

T T T

T T T T T

A P PA Q C C hX X X F F

A PJ PA C C hX X X

P hX Q

A PJ J PA Q C C hX X X F F





        

       

    

           
 

In addition, the state feedback control law is given by 1 TK B P  . 
 
Proof: Choose the Lyapunov function 
 

1 2 3 4.V V V V V                                                                                                                          （14） 

where 
 

1

2 1 2

0

3 33

4 0

( ( ) ( )) ( ( ) ( )),

( ) ( ) ( ) ( ) ,

( ) ( ) ,

.

T

t t
T T

t h t h

t
T

h t

t
T

h

V x t Jx t h P x t Jx t h

V x s Q x s ds x s Q x s ds

V x s X x s dsd

V X dsd









  

 

 



    

 





 

 

 

 

 

 
 
Due to the establishment of (14), it is easy to deduce the establishment of (11), that is, the closed-loop system is 

robust and stable under the condition ( ) 0w t  . Then we will prove that when ( ) 0w t  , for a given positive 

constant 0 , 
2 22

2 2
( ) ( )z t w t  holds. Select a performance index  
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2

0
( ) ( ) ( ) ( )T Tz t z t w t w t dt



                                                                                                         （15） 

 
From the zero initial state, we can get 
 

2

0
(( ( ) ( ) ( ) ( ) ( )) lim ( ).T T

t
z t z t w t w t V t dt V t




     

 
 

According to the selection of the Lyapunov function, lim ( ) 0
t

V t


 holds evidently. Thus 

 

2

0
(( ( ) ( ) ( ) ( ) ( )) .T Tz t z t w t w t V t dt



                                                                                        （16） 

 

By substituting 1( ) ( ) ( )z t Cx t C x t h   into the above formula and deriving (15) along the  closed-loop system, 

we can get the following results: 
 

2
1 1

1 1

1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )(

T T T T T T T T

T T T T T T T T

T T T T T T

z t z t w t w t V t x t C Cx t x t C C x t h x t h C Cx t

x t h C C x t h x t A P PA x t x t A PJx t h x t h J PAx t

x t h A Px t x t PA x t h x t h A PJ J PA

      

        

      



   

   
1

1 1 1

1 1

1

) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

T T

T T T T T T T

T T T T T T T T

T T

x t h w t B Px t

w t B PJx t h x t PB w t x t h J PB w t x t PJx t h x t Px t

x t PAx t x t PA x t h x t PB w t x t h J Px t x t Px t x t A

Px t x t h A P

 

       

       

 

   

        


1 1 1 2

2 33 33

11 13 13 12 13 23

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )( ) ( ) (

T T T T T

t
T T T T T

t h

T T T T T

x t w t B Px t x t Q x t x t h Q x t h x t Q x t

x t h Q x t h hx t X x t x s X x s ds x t PY t Y t Px t

x t hX X X x t x t hX X X x t h x t



     

      

        



   

       

12 13 23

2
22 23 23 33

)( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

T T

t
T T T T

t h

h hX X X

x t x t h hX X X x t h x s X x s ds w t w t ，


 

        
 

 

where
1 1 1,A A A BK A A A        . By substituting 1 TK B P  into the above formula and according to 

Lemme 1 and Lemma 2, we can get 2( ) ( ) ( ) ( ) ( ) ( ) ( )，T T Tz t z t w t w t V t t t        where  

 

( ) [ ( ) ( ) ( ) ( ) ( )]T T T T T Tt x t x t x t h x t h w t    
 

 
and  
 

11 12 13 1

33 2 23 1

33 1

2

2

0

* 2

* * 0

* * * 0

* * * *

T

PB

P hX Q PJ PB

J PB

Q



   
 

    
    
 

 
  

  



 

 
 
with  

1 1
11 1 11 13 13 0 0

1 1
12

1 1
13 1 1 12 13 23

1
23 1

33 1 1 1 1 1 22 23

2 2 ,

2 ,

2 ,

2

( )

T T T T T T

T T T

T T T T T

T

T T T

A P PA Q C C PBB P hX X X F F PEE P

A P PBB P PEE P

A PJ PA C C PBB PJ hX X X PEE PJ

PA PEE PJ

A PJ J PA Q C C hX X

  

 

 



 

 

 



          

   

         

  

        









 1
23 1 1 2 .T T T TX F F J PEE PJ     
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From lemma 2, the establishment of (14) can deduce 0  . Thus, 0  holds, that is, 
2 22

2 2
( ) ( ) .z t w t

Therefore, the closed-loop system H has performance index 0.   
 

Note 1: Theorem 1, 2 and 3 respectively give conditions of delay-dependent robust stability and robust H

stabilization for uncertain time-delay systems. Since they are all given by LMI, they can be used to solve the 

maximum value of time-delay h  (when  is given) without parameter adjustment. In these theorems, the 

maximum delay constant which guarantees that the system (1) is robust stable or robust stabilizable can be 
obtained by solving the following quadratic convex optimization problem: 
 

1 2 33

max

. . (8) ( 10) 0, 0, 0, 0,

0 0( 0).

imize h

s t or P Q Q X

and X or 




   
     

 
This kind of optimization problem can be solved by Matlab toolbox. 
 
Note 2: In fact, we can also solve the smallest  satisfying the condition in Theorem 3 by giving a delay 

constant. The method is also to use the toolbox in MATLAB. This kind of problem is also called the optimal 

H design problem. Since the methods are similar, all discussions are omitted. 

 

5 Conclusion 
 
In this paper, the problems of robust stability and stabilization for linear uncertain neutral time-delay systems 
are studied. By constructing a new Lyapunov function and using the technique of linear matrix inequality, a 
delay-dependent robust stability criterion for a class of uncertain neutral systems with external disturbance and 
zero control input is given. And then using the results obtained, the problem of robust stabilization for a class of 
linear uncertain neutral systems without disturbance is discussed. The calculation method of feedback gain 
matrix is given, and a sufficient condition for delay-dependent robust stability of the corresponding closed-loop 

system is obtained. Furthermore, the problem of H robust stabilization for a class of linear uncertain neutral 

systems with disturbance is studied, and a sufficient condition of robust stabilization for systems with H

performance index is obtained.  
 
Our future work is to construct more Lyapunov functionals in order to obtain more stability conditions. In this 
paper, the research on neutral systems with the uncertainty and the interference is only theoretical analysis. Its 
specific application in practice will be another topic to be studied in our future work. 
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