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Abstract: Gastric cancer has a high mortality rate worldwide, but it can be prevented with early
detection through regular gastroscopy. Herein, we propose a deep learning-based computer-aided
diagnosis (CADx) system applying data augmentation to help doctors classify gastroscopy images
as normal or abnormal. To improve the performance of deep learning, a large amount of training
data are required. However, the collection of medical data, owing to their nature, is highly expen-
sive and time consuming. Therefore, data were generated through deep convolutional generative
adversarial networks (DCGAN), and 25 augmentation policies optimized for the CIFAR-10 dataset
were implemented through AutoAugment to augment the data. Accordingly, a gastroscopy image
was augmented, only high-quality images were selected through an image quality-measurement
method, and gastroscopy images were classified as normal or abnormal through the Xception net-
work. We compared the performances of the original training dataset, which did not improve, the
dataset generated through the DCGAN, the dataset augmented through the augmentation policies of
CIFAR-10, and the dataset combining the two methods. The dataset combining the two methods
delivered the best performance in terms of accuracy (0.851) and achieved an improvement of 0.06
over the original training dataset. We confirmed that augmenting data through the DCGAN and
CIFAR-10 augmentation policies is most suitable for the classification model for normal and abnormal
gastric endoscopy images. The proposed method not only solves the medical-data problem but also
improves the accuracy of gastric disease diagnosis.

Keywords: computer-aided diagnosis (CADx); data augmentation; generative adversarial network
(GAN); deep learning; gastroscopy image

1. Introduction

According to the statistics released by the Global Cancer Observatory in 2018, gastric
cancer is the fifth most frequently diagnosed cancer and the third leading cause of cancer
deaths worldwide, as shown in Figure 1 [1].

To increase the survival rate of patients with gastric cancer, it is important to detect
and treat it early through gastroscopy. A previous study showed that the survival rate
of patients with gastric cancer who underwent gastric endoscopy was 2.24 times higher
than that of those who did not [2]. Precancerous lesions that cause gastric cancer include
gastritis, gastric ulcer, and gastric bleeding. Most of these gastric diseases are difficult to
detect because they are asymptomatic until they develop into gastric cancer. Therefore,
gastric cancer can be prevented through the early detection of lesions that develop into
gastric cancer with regular gastroscopy. As the importance of gastroscopy increases, the
number of gastroscopy examinees is expected to increase. In addition, as the imaging
technology continually develops and the number of medical images rapidly increases,
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the fatigue experienced by specialists who perform the diagnosis by relying on the naked
eye increases, and differences in diagnosis occur depending on the skill of the specialist.
Therefore, the need for a computer-aided diagnosis (CADx) system to assist specialists
in performing the diagnosis is increasing. A CADx system assists a doctor in performing
the diagnosis by detecting and analyzing lesions, reduces the manual work of endoscopy
specialists, and improves the accuracy of gastric-disease diagnosis.
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Currently, CADx systems using deep learning are being actively studied. According
to research results, the latest deep-learning technologies can consistently deliver superior
performance even if the data contain some errors, as long as there are enough data [3]. How-
ever, if the system does not have enough training data to train parameters, then overfitting
problems that hinder its performance occur more easily. Therefore, deep learning-based
research requires a large amount of quality data. However, the collection of medical
data, owing to their nature, requires approval from institutional review boards for the
protection of personal information of patients; further, it is highly expensive and time
consuming because of the involved verification process that includes medical examinations
and biopsy tests. To solve this problem, many studies have proposed methods of generat-
ing data similar to actual data through data augmentation. Frid-Adar et al. [4] introduced
data-augmentation methods through rotations, flipping, transmission, and scaling and a
general adversarial network (GAN) for computed-tomography (CT) images of the liver.
Zafar et al. [5] proposed a method of augmenting data and classifying melanoma by apply-
ing random image-brightness and color-contrast values to skin-lesion images. Shin et al. [6]
proposed a method of generating synthetic abnormal magnetic resonance imaging (MRI)
images with brain tumors using a GAN from brain MRI images. Dai et al. [7] produced
split images of the lungs and heart through a trained GAN from chest X-ray images.
Zhao et al. [8] improved the performance of the method classifying malignant and benign
pulmonary nodules by generating various lung CT images through a forward GAN and
improving the image quality through a backward GAN. In addition, Gomes Ataide et al. [9]
flipped, rotated, and blurred thyroid nodule ultrasound images to augment data, extract
features, and classify them as either benign or malignant through a random forest classifier.
Lyu et al. [10] classified different types of lung nodule malignancies through a multilevel
cross-residual convolutional neural network (CNN). These studies [4–10] were conducted
by applying a basic augmentation method or GAN for lesions such as lung, skin, and brain
lesions but not gastric lesions. Asperti et al. [11] increased the amount of data by randomly
applying rotation, width shift, height shift, shear, and zoom methods within a certain
range to classify gastroscopy images as normal or abnormal. Togo et al. [12] improved the
performance of the model by generating X-ray gastritis images using a loss function-based
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conditional progressive growing generative adversarial network (GAN). Nguyen et al. [13]
proposed a method of classifying in vivo endoscopy images into normal or abnormal
through VGG, DenseNet, and inception-based networks using the proposed ensemble
learning. Some studies [11–13] also used gastroscopy and X-ray images of the stomach, but
data were augmented by applying basic augmentation methods or a GAN. However, in the
present study, for data augmentation, we mixed data generated through a deep convolu-
tional generative adversarial network (DCGAN) with data applied using the augmentation
policies of the CIFAR-10 dataset proposed by AutoAugment. In addition, we attempted to
improve the performance of the model by using an image quality-measurement method
for the generated images.

Related studies have proposed various augmentation methods using various medical
images, such as lung CT images, brain MRIs, and endoscopy images, and a method that
applies classification networks based on machine learning and deep learning. In this
study, two methods were used to supplement the insufficient amount of data required
for learning. In our method, a gastroscopy image is generated through a DCGAN using
CNNs with excellent image-processing performance, and data are augmented by applying
25 policies optimized for the CIFAR-10 dataset suggested by AutoAugment. An image
quality-measurement method, with the Xception network (a deep learning-based image-
classification network), is applied for the augmented data. Then, only images that are
similar to real images are selected and added to the training dataset. By including the
image quality-measurement process, the increased image was verified, and only data that
could improve the quality of learning were selected for performance improvement. The
proposed method is expected to improve the accuracy of gastric-disease diagnosis and help
doctors perform the diagnosis. Therefore, the classification network, data-augmentation
method, and image quality-measurement method employed in this study will be described.

2. Materials and Methods
2.1. Dataset

The gastrointestinal endoscopy images used in this study were obtained from the
Department of Gastroenterology at Gyeongsang National University Hospital and used
with white-light endoscopy images that were approved by the Institutional Review Board.
All endoscopy images were acquired using OLYMPUS GIF-HQ290. They were verified
through an examination and a biopsy test conducted by a gastroenterologist. The data
used in the experiment were obtained from 150 patients and randomly divided into a
training dataset and a test dataset. The training and test datasets also were confirmed by a
gastrointestinal endoscopy specialist (i.e., a gastroenterologist). As shown in Table 1, the
training dataset of the actual gastroscopy images consisted of 655 normal and 655 abnormal
images. The test dataset consisted of 164 normal and 164 abnormal images. Lesions with
abnormalities include gastritis, gastric SMT (submucosal tumors), early gastric cancer,
polyps, gastric ulcer, and bleeding. Figure 2 presents the normal and abnormal gastroscopy
images from the dataset.

Table 1. Classification of images in the datasets.

Normal Abnormal

Training dataset Original 655 655

Synthetic 11,944 11,944

Test dataset 164 164

Total 12,763 12,763
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2.2. Classification Method

Xception is a model based on Inception. In addition to it reducing the connection
between nodes using the Inception module in GoogLeNet, Xception is a network that
separates finding the relationships between all the channels and finding local informa-
tion [14]. Accordingly, the extreme version of the Inception module is proposed herein. As
shown in Figure 3, after applying a 1 × 1 convolutional layer to the input, all the chan-
nels are separated, and each channel is individually operated for the 3 × 3 convolution.
Xception uses a depth-wise separable convolution created by modifying the operation. In
a depth-wise separable convolution, the convolution operation was performed for each
channel, and a 1 × 1 convolutional layer was obtained. As shown in Figure 4, the standard
convolution creates one feature map by considering all the channel and area information.
Conversely, the depth-wise separable convolution adjusts the number of output feature
maps by performing a 1 × 1 convolution operation, called point-wise convolution, after
the depth-wise convolution operation that creates one feature map for each channel.
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2.3. Generating Synthetic Gastroscopy Images

A large amount of high-quality training data is required to improve the performance
of deep learning. However, medical data are difficult to collect because the process is
expensive and takes considerable time to specify the ground truth of the lesion. This
section describes the 25 policies of the CIFAR-10 dataset and DCGAN used to improve
the performance of the model and an image quality-measurement method used to select
high-quality data from the augmented data.

2.3.1. DCGAN

A GAN is a deep neural network architecture composed of two neural networks,
namely generator and discriminator networks [15]. The generator network generates new
data using existing data. The generator aims to generate new data similar to real data
based on a randomly generated vector of numbers called a latent space. The discriminator
distinguishes between real data and synthetic data through the generator. As shown in
Figure 5, two neural networks are trained against each other by repeating the generation
and discrimination processes. During the training, each of the two neural networks
attempts to minimize its own objective functions. Equation (1) expresses the final objective
function of the GAN.

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)]+Ez∼pz(z)[ log(1− D(G(z)))] (1)
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Figure 5. Architecture of the general adversarial network (GAN).

The DCGAN used in this study was an improved GAN [16]. Since a fully connected
layer was used in the GAN, the generation of high-resolution images by the generator is
limited, and learning is not stable. The DCGAN addresses this limitation using convolu-
tional layers in both subneural networks. In the DCGAN, discriminators classify images as
real or fake using a dense classification layer. The generator takes a random noise vector
from a uniform distribution and transforms it until it produces a final image. Figure 6
shows the structure of a generator that generates a 128 × 128 image. The generator takes
one tensor with the shape of (batch size, 100) and outputs one tensor with the shape of
(batch size, 128 × 128 × 3).

2.3.2. AutoAugment

Augmentation is proposed as one of the techniques to secure enough data to train
deep-learning models. Augmentation refers to a methodology for obtaining new training
data by applying artificial changes to a small amount of training data. The goal is to
create data that are similar to the real data and secure new images by flipping or cropping
the image. However, it is expensive and takes considerable effort to find an aggregation
technique suitable for the data. Therefore, to solve this problem, we applied AutoAugment
developed by Google.
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The AutoAugment method employed in this study is an algorithm that automatically
finds the most appropriate augmentation policy for an image dataset through reinforce-
ment learning. The method presented by the Google Brain team at the Conference on
Computer Vision and Pattern Recognition 2019 provides an optimal augmentation method
for validated datasets such as ImageNet, Street View House Number (SVHN), and CIFAR-
10 [17]. The CIFAR-10 dataset contains 50,000 training images, including cats, birds, and
airplanes, and Google used data consisting of 4000 images randomly selected out of the
50,000 and collectively called them the “reduced CIFAR-10 dataset”. The ImageNet dataset
consists of approximately 1.4 million images in 21,841 classes including people, animals,
and musical instruments, and SVHN is a dataset composed by cropping the house number
image from Google Street View. As shown in Figure 7, through a recurrent neural network
(RNN), which is the controller that determines the augmentation technique policy, and the
child network created by the controller, various augmentation policies are applied to the
dataset. In this process, we obtained R, which is the performance accuracy, and updated R
in the controller to find the best policy.
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A total of 25 augmentation policies are presented, and one policy is composed of five
subpolicies to find various augmentation techniques suitable for the data. The subpolicy
consists of two operations. The operation method consists of ShearX/Y, TranslateX/Y,
Rotate, AutoContrast, Invert, Equalize, Solarize, Posterize, Contrast, Color, Brightness,
Sharpness, Cutout, and Sample Pairing functions, and n(T) = 16. For each operation,
probability values (P = {0, 0.1, ..., 1}, n(P) = 11) and strength values (M = {0, 1, ..., 9} and

n(M) = 10) were used. Consequently, a total of ((16× 11× 10)2)
5
= 2.9× 1032 candidate

groups for image augmentation were defined in AutoAugment. In the learning process,
these policies were randomly selected and applied to the training data for learning, and
the classification was repeated to find an enhancement policy with improved performance
to consequently determine the optimal policy. Accordingly, the optimal augmentation
method was suggested according to the data characteristics.



Appl. Sci. 2021, 11, 760 7 of 12

2.4. Image Quality Measurement Method

The quality of data generated through GAN is not automatically measured and must
be inspected with the naked eye, rendering the optical judgment difficult. Therefore,
to use only high-quality data for learning, a quantitative criterion for evaluating the
generated data is required. Many studies have proposed criteria to measure the GAN
performance. The inception score proposed by Shane Barratt [18] is the most widely used
scoring algorithm for GANs. It measures the quality and diversity of the generated image
by extracting the features of the real image and the image created using the pretrained
Inception V3 neural network, where the higher the inception score, the better the quality of
the model. The inception score can be calculated using Equation (2).

IS(G) = exp(Ex∼pgDKL(p(y|x)
∣∣∣∣p(y))) (2)

where p(y|x) is the conditional class distribution, x is the generated image, and y is the
label. p(y) is the marginal class distribution and can be calculated using Equation (3).

p(y) =
∫

p(y|x )pg(x) (3)

If the generated image is diverse, then p(y) approaches a uniform distribution. How-
ever, measuring the quality based on the inception score also encounters problems. If the
model generates only one image per class, even if the diversity is low, p(y) may be close to
a uniform distribution, thus resulting in incorrect performance.

Therefore, in this study, quality was evaluated by applying the method proposed by
Shmelkov [19] to objectively evaluate the generated image. Our proposed method is to
train a deep-learning model with a training dataset consisting only of real data and test
newly created data to select only images with an accuracy of 0.8 or higher, among correctly
classified images. Through this process, not only the images generated through GAN but
also the quality of data augmented by 25 policies of the CIFAR-10 dataset were evaluated.
As shown in Figure 8, the Xception model was trained with an actual gastroscopy image,
and the data expanded through the 25 policies of CIFAR-10 and DCGAN were composed
of a test dataset and classified as normal or abnormal. Correctly classified images mean
that they are similar to real images, and only high-quality images were selected by selecting
only images with a classification prediction degree of at least 0.8. Through this method,
the quality of image was judged based on a quantitative standard rather than subjective
evaluation.
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3. Results

We propose a classification method for normal and abnormal gastroscopy images
through CADx. Figure 9a presents the architecture of a basic deep-learning model using a
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dataset consisting of only real gastroscopy images. Figure 9b presents the architecture of a
deep-learning model using training data that combines DCGAN and AutoAugment.
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of the CIFAR-10 dataset.

In a previous study [20], we applied 25 augmentation policies to optimize gastroscopy
images in the CIFAR-10, ImageNet, and SVHN datasets. It was confirmed that the policies
of the CIFAR-10 dataset are the most suitable for gastroscopy image classification. Therefore,
in this study, the existing data were augmented 25 times by applying the optimized
augmentation policies of the CIFAR-10 dataset. The augmentation policies—Equalize,
AutoContrast, Color, and Brightness—were generally selected, and most of them chose
color-based conversion. Moreover, we found that the results of Xception in the gastroscopy
medical image classification were the best among four different deep-learning models,
namely Xception, Inception-V3, Resnet-101, and Inception-Resnet-V2. Based on the results,
we selected the Xception network for this study.

The DCGAN and the 25 augmentation policies of the CIFAR-10 dataset were im-
plemented to augment the training data. After selecting data using the Xception-based
image quality-measurement method, the augmented data were trained and tested. Among
the collected training data, 655 normal and 655 abnormal images were used to generate
200 normal and 200 abnormal images through the DCGAN, which were increased by 25
times through the CIFAR-10 dataset, and a total of 11,744 normal and 11,744 abnormal
images were selected. The selection criterion of the data was an accuracy of at least 0.8.
To verify whether the image quality-measurement method is effective, we compared the
performances of the model with and without the image quality-measurement method. We
used the receiver operating characteristic curve (ROC curve), an evaluation index, and
compared the performances with the Az value of the area under the curve.

Figure 10 presents the results of the classification performance of the models based on
the ROC curve. As shown in Figure 10b, the Az values after adding 400 images through
the DCGAN and after adding 23,488 images through the CIFAR-10 dataset were 0.882 and
0.884, respectively. After applying both DCGAN and CIFAR-10 datasets, the Az value
was 0.9, which was the highest. The Az value was significantly (p ≤ 0.01) higher for
the DCGAN + CIFAR-10 than for the DCGAN and CIFAR-10. However, the difference
between the DCGAN+CIFAR-10 and the original did not reach statistical significance
(p ≥ 0.01). The results confirmed that when data were augmented, the performance of
all the data was improved, compared to the original data. Moreover, the model with the
image quality-measurement method outperformed the model without the image quality-
measurement method.
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In addition, after making correct predictions for normal and abnormal images based
on the confusion matrix, the performance was improved in terms of the accuracy, precision,
recall, and F1 score, as computed using Equations (4)–(7).

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1− Score = 2× Precision× Recall
Precision + Recall

(7)

A true positive (TP) is a value that represents correct classification of an abnormal
image as an abnormal image, a false negative (FN) is a value that represents incorrect
classification of an abnormal image as a normal image, a false positive (FP) is a value
that represents incorrect classification of a normal image as an abnormal image, and a
true negative (TN) is a value that represents correct classification of a normal image as a
normal image. Precision refers to the ratio of correctly predicted abnormal images to total
predictions of images as abnormal images, and recall refers to the ratio of correctly predicted
abnormal images to total actual abnormal images. Accuracy refers to the correctly classified
proportion in all the cases, and the F1 score is the harmonic average of precision and recall.
After increasing the data using both the DCGAN and CIFAR-10, the method has an accuracy
of 0.851 and F1 score of 0.841, which improves the performance by approximately 0.06,
compared to the model without data augmentation, as shown in Table 2. The values in
brackets in the table are the results of the model without the image quality-measurement
method. Thus, the results confirmed that the model with the image quality-measurement
method delivered a better overall performance than the model without the method.

Table 2. Model performance for gastric cancer classification.

Accuracy Precision Recall F1 Score

Original 0.796 0.839 0.732 0.782
DCGAN 0.811 (0.814) 0.823 (0.825) 0.793 (0.774) 0.807 (0.804)
CIFAR-10 0.832 (0.805) 0.819 (0.825) 0.854 (0.774) 0.836 (0.799)

DCGAN+CIFAR-10 0.851 (0.820) 0.896 (0.800) 0.793 (0.854) 0.841 (0.826)
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4. Discussion

In this study, the data required for learning were secured by applying an image-
generation method through the DCGAN and an automated augmentation method using
a CNN and RNN. Through the Xception-based image quality-measurement method, it
has been augmented by approximately 18 times, compared to the existing training data.
Comparing the performance of the model with the augmented data, the AutoAugment with
the CIFAR-10 dataset is more suitable for the classification of actual gastroscopy images
because it delivers better performance than that of the DCGAN. Since a larger amount
of data are required to generate various types of data through the DCGAN, data with
relatively better quality than that of CIFAR-10 could not be obtained. Moreover, many of
the AutoAugment policies of the CIFAR-10 dataset are based on a variety of colors, which
seem to yield superior classification results on the gastroscopy images. In this study, our
proposed model, which aims to augment data using the DCGAN and CIFAR-10 datasets,
delivered superior performance. The accuracy, Az value, and F1 score of the model were
0.851, 0.9, and 0.841, respectively. The value of precision increased to 0.896, but the value
of recall decreased to 0.793. The higher the values of both indicators, the better the model.
However, the two values have a trade-off relationship; thus, the higher the precision, the
lower the recall. The findings of this study confirm that the classification model generated
through the DCGAN and the policies of the CIFAR-10 dataset with the addition of an image
quality-measurement method performs the best. Moreover, securing sufficient learning
data by augmenting data through the DCGAN and CIFAR-10, as proposed herein, and
selecting data through an image quality-measurement method are effective in improving
the performance.

This paper proposed a method of solving the problem of performance deterioration of
deep learning owing to insufficient data. The proposed method augments the data required
for learning and solves the problem of the lack of data through the image quality-evaluation
process. Not only in the medical field but also in various areas, such as defect inspection in
a smart factory, pest classification, and distracted driving detection, the problem of data
shortage is being solved by data augmentation [21–23]. The method proposed herein is
expected to be applicable to not only medical images but also various areas where data are
insufficient. Future studies will be required to evaluate the adaptability of our methods to
other modalities.

To generate data through DCGAN, there is a limitation in that the larger the amount
of data, the more diverse and high-quality data can be generated. Therefore, in the future,
we plan to conduct research to generate data through a GAN after going through different
data-augmentation methods. In addition, we planned to compare the performance of
the model by creating an image through a different type of GAN other than DCGAN or
applying it to other CNN models.

5. Conclusions

Deep neural networks are effective when trained with a large supervised dataset.
However, acquiring such a dataset used in a CADx system is a difficult task. Herein, we
proposed a computer-assisted diagnostic system that generates data through a DCGAN
and increases the amount of data by implementing the augmentation policies of the CIFAR-
10 dataset. An image quality-measurement method was used to select accurate data from
the augmented data. Our results revealed the performance of the proposed model in
terms of accuracy, precision, recall, Az value, and F1 score. The model that used the two
methods, DCGAN and Cifar10, delivered 5% superior Az value results than those that
did not use these two methods. It delivered the accuracy and F1 score that were about 6%
better than that of the existing method. Therefore, the method of using the DCGAN and
CIFAR-10 dataset policies, along with the image quality-measurement method proposed
herein, was suitable for solving the problem of acquiring large datasets for training deep
neural networks.
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