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Abstract 
 

In a classical multiple linear regression analysis, multicollinearity and autocorrelation are two main basic 
assumption violation problems. When multicollinearity exists, biased estimation techniques such as 
Maximum Likelihood, Restricted Maximum Likelihood and most recent the K-L estimator by Kibria and 
Lukman [1] are preferable to Ordinary Least Square. On the other hand, when autocorrelation exist in the 
data, robust estimators like Cochran Orcutt and Prais-Winsten [2] estimators are preferred. To handle these 
two problems jointly, the study combines the K-L with the Prais-Winsten’s two-stage estimator producing the 
Two-Stage K-L estimator proposed by Zubair & Adenomon [3]. The Mean Square Error (MSE) and Root 
Mean Square Error (RMSE) criterion was used to compare the performance of the estimators. Application of 
the estimators to two (2) real life data set with multicollinearity and autocorrelation problems reveals that the 
Two Stage K-L estimator is generally the most efficient. 
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1 Introduction  
 
Regression analysis is a classic commonly used prediction tool. Regression analysis explore the relationship 
between a dependent variable (response variable) and one or more independent variable (explanatory variable). 
The general single-equation linear regression model can be represented as: 
 

	� = 	�� + ∑ ��
�
��� �� + U																																																																																																																																			(1.1)  

 
where y	is the dependent variable;		��, ��, ��, . . . , ��   are the independent variables; ��	, � = 0,1,2…� are the 

regression coefficients, U is the stochastic disturbance term or error term. 
 
For a sample of n observations, 
 

�� = 	�� +	����� +	�����+	. . . +	����� + U�                                                 (1.2) 
 
where  
 

� = 1, 2,…n.       
 
Thus, 
 						

�
�
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�	 × 	1							�		 × 	(	� + 1)								(� + 1)	× 	1									�	 × 	1										 
 
The general form is: 
 

y = X β + U                                                                   (1.3) 
 
where y is an (n × 1) vector of observations of the dependent variable, X matrix is an n × (k+1)  full rank matrix 
of explanatory variables, �  is a ((k+1) ×1 vector of unknown parameters to be estimated, U is (n × 1) vector of 
random error. The parameter � in a linear regression model are commonly estimated using the Ordinary Least 
Squares Estimator (OLSE). The OLSE of  �  is given as:  
 

  yXXXOLS


1̂                                                                                (1.4) 

 
The estimator is generally preferred if there is no violation in any of the assumptions of the linear regression 
model [4,5].  
 
The assumption of uncorrelated errors must be valid for the efficiency of the OLSE. However, violation of this 
assumption which is called autocorrelation can be encountered in practice especially in time series data. The 
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presence of some independent variables which is not included in the model but should be in the model or non-
random measurement errors at the dependent variable may cause autocorrelation problem.  
 

1.1 Autocorrelation problem in a linear model 
 
Autocorrelation in the error terms is a critical problem faced in the linear regression model and it poses serious 
effects on the OLSE. When autocorrelation is present in the errors the OLSE will not be efficient and the usual 
estimator of the variance–covariance matrix will be biased. Thus, it become misleading using these variances for 
the confidence intervals and hypothesis tests (Griffiths et al., 1993). 
  
Alternative estimators to the OLSE were proposed. Some researchers have worked on the methods for 
detecting the presence of autocorrelation and alternative estimators to estimate the parameters in the linear 
regression model with autocorrelation error. These include Aitken [6], Cochran and Orcutt [2], Durbin and 
Watson (1950), Hildreth and Lu (1960), Rao and Grilliches (1969), Beach and Mackinnon [7], Kramer (1980), 
Busse et al. (1994), Kramer and Hassler (1998), Kleiber (2001), Kramer and Marmol (2002), Butte (2002), 
Nwabueze (2000), Nwabueze [8], Olaomi [9], Olaomi [10], Olaomi and Ifederu [11], Grochova and Strelec 
(2013). In time-series applications, there are many structures of autocorrelation (Olaomi and 
Ifederu, 2008).  
 

1.2 Multicollinearity problem in a linear model 
 
Another popular assumption is that the independent (explanatory) variables are independent. However, in 
practice, there may be near to strong linear relationship among the explanatory variables which is referred to as 
multicollinearity. According to literature, the performance of OLSE drops when there is multicollinearity. The 
estimator possesses large variance and occasionally the regression coefficient will exhibit wrong sign (Gujarati, 
1995); [5,12].  
 
Various methods of estimating the parameters in linear regression model with multicollinearity are available in 
the literature. Authors include Hoerl and Kennard [13], McDonald and Galarneau (1975), Lawless and Wang 
[14], Hocking, Speed and Lynn [15], Dempster, Schatzoff and Wermuth (1977), Wichern and Churchill (1978), 
Gibbons (1981), Nordberg (1982), Saleh and Kibria (1993), Haq and Kibria (1996), Singh and Tracy (1999), 
Kibria (2003), Khalaf and Shukur (2005), Alkhamisi, Khalaf and Shukur [16], Alkhamisi and Shukur [17], 
Muniz and Kibria [18], Dorugade and Kashid [19], Mansson, Shukur and Kibria [20], and recently Khalaf 
(2013), Ghadhan and Mohamed (2014), Dorugade [21], Kibria and Shipra [22], Ayinde et al. [5], Lukman et al. 
[23], Lukman et al. [24,25], Qasim et al. (2019), Kibria and Lukman [26], Aslam and Ahmad [27], Dawoud and 
Kibria [28].   
 

1.3 The joint violation of autocorrelation and multicollinearity problem in a linear 
model 

 
Literature have recently show that both problems can jointly exist in a linear regression model [29], (Bayhan and 
Bayhan, 1998); [30,31], (Ozkale and Tugba, 2015), [32,33]. Trenkler [29] proposed the generalized ridge 
estimator which takes the autocorrelation into account in the general linear regression model. Hussein and Zari 
[34] combined the ridge regression estimator and the generalized least squares estimator to mitigate both 
problem. Recently, Eledum and Zahri [35] proposed the feasible generalized ridge (FGR) estimator to deal with 
both the multicollinearity and autocorrelation problems. Dawoud and Kaçıranlar (2015) proposed the feasible 
generalized Liu (FGL) regression estimator by combining the Liu estimator and the feasible generalized least 
squares. Ozbay et al. (2016) combined the feasible generalized restricted ridge regression estimator to take 
account of both problems. Bello et al. (2017) also introduced feasible generalized Ridge Estimators as 
Alternatives to ridge and feasible generalized least squares estimator.  
 
The Ordinary Least Square (OLS) estimator is popularly employed to estimate the regression parameter in the 
linear regression model (LRM). The estimator suffers setback in the presence of multicollinearity and/or 
autocorrelation. It produces inefficient estimates with large variance. Also, the two problems do exist jointly in 
LRM and in practice estimators to handle them together are rare. Thus, this research attempted to test the 
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robustness of the Two Stage K-L estimator proposed by Zubair & Adenomon (2021) with other popular 
estimators in literature.  
 

2 Materials and Methods 
 
2.1 Two – Stage K-L estimator  
 
Consider the Linear Regression Model with autoregressive of order 1, AR (1) given as: 
 

y� = β� + β�X�� + β�X�� + ⋯ + β�X�� + U�	                                             (2.1) 

 
where ut= ρu���		 + ε�, ρ is the autocorrelation parameter (|ρ|< 1), ε� is a random term such that ε� ~ N (0,	σ2), 
E(ε�ε�) = 0 (i ≠ j). Equation (3.1) in matrix form is written as follows:  

 
y = Xβ+U              (2.2) 

 
Pre-multiplying both sides of equation (1.4) by an n × n non-singular matrix P, we obtain  
 

Py = PXβ+PU                                                                                          (2.3) 
 
The error term becomes PU with E (PU) = 0 and E(PU′UP)′ =  σ2 PΩP′.	Thus, if it is possible to specify P such 
that PΩP′= I implying that P′P = Ω-′, then the OLS estimates of the transformed variable PY and PX in equation 
(2.3) have all the optimal properties of OLS and so the usual inferences could be valid. Re-defining equation 
(2.3) as 
 

y* = X*β + U*                                                                                              (2.4) 
 
where 
 

 y* = Py, X* = PX and U* = PU. 
 
The generalized least squares estimator is obtained as follows:  
 

β�GLS = (X*′X*)-′ X*′y* = (X′P′PX)-′ X′P′Py 
 

          = (X′ Ω-′	X)-′	 X′ Ω-′	y                                                            (2.5) 
 
Ω is a known positive definite (p.d.) matrix. However, in practice, Ω is often unknown. A common practice is to 
use the estimated matrix of Ω in order to find the estimated generalized least square estimator (EGLSE) or Two 
Stages method estimator that is more efficient than the GLSE. We reform the Two Stages procedure as follows 
to propose the new estimator. 
 
From equation (2.4) where E(U*)=0, Cov(U*)=	σ2I. Thus, the OLS estimator for model (2.4) is: 
 

β�TS = (X*′X*)-′ X*′y*                                   (2.6) 
 
Where:  
 

y ∗= Py =

⎣
⎢
⎢
⎢
⎢
⎡(1 − ��)

�

� 0 0 ⋯ 0 0
−� 1 0 ⋯ 0 0
0 −� 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋮ ⋮
0 0 0 ⋯ −� 1⎦

⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
��

��

��

.

.

.
��⎦

⎥
⎥
⎥
⎥
⎥
⎤

 



 
 
 
 

Anono and Osagie; AJPAS, 14(3): 22-33, 2021; Article no.AJPAS.72693 
 
 

 
26 

 

X*=PX=
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Note that X*′X*=X′P′PX= X′Ω-1X and X*′y*=X′P′Py= X′Ω-1y,  
 
Where:  
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                                        (2.7) 

 
After estimating the �, we obtained Ω��and then the two stage is given as Prais Winsten (1954): 
 

β�TS= (X′ Ω-1	X)-1	 X′ Ω-1	y                                                                                  (2.8) 
 
The proposed estimators in this study are as follows: 
 
Kibria and Lukman (2020) proposed the K-L estimator to solve the problem of multicollinearity in the LRM.  
 

OLSKL kIXXkIXX  ˆ)()(ˆ 1  
             (2.9) 

 
Following (2.8) and (2.9), is the Two stage K-L estimator by Zubair & Adenomon (2021), as follows: 
 

TSpTKL kIXXkIXX  ˆ)()(ˆ 111  
                                                                          (2.10) 
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2.2 Existing estimators 
 
Feasible Generalized Least Square Estimators (FGLSE) includes Corchran Orcutt Estimator (CORC), 
Maximum Likelihood Estimator (MLE), Restricted Maximum Likelihood Estimator (RMLE) and Prais Winsten 
Estimator.  
 

 2.3 Data Description  
 
Two data sets are used in this study to examine the performance of the estimators. The data sets are given in 
details below:  
 
 



 
 
 
 

Anono and Osagie; AJPAS, 14(3): 22-33, 2021; Article no.AJPAS.72693 
 
 

 
27 

 

2.3.1 Hussein data 
 
The data set used in this study was adopted from the study of Hussein and Zari [34]. The regression model was 
defined as: where: Y�  is the product value in the manufacturing sector; X��  is the value of the imported 
intermediate raw materials; X�� is the value of imported capital commodities; X�� is the value of imported raw 
material. 
 
2.3.2 French economy data 
 
The detail about this data set is initially described in Chatterjee and Price (1977) and later available in the 
following references Malinvard (l980) and Liu (1993). It comprises of one predictand, Imports and three 
predictor variables (domestic production, stock information and domestic consumption) with eighteen 
observations. 
 

2.4 Criterion for Investigation and Performance of Estimators  
 
Several authors in literatures have used the Mean Square Error (MSE) to compare the performance of 2 stage K-
L regression estimator with the Ordinary Least Square estimator when there is multicollinearity and 
autocorrelation. These authors include Hoerl and Kennard [13], Lawless and Wang [14], Saleh and Kibria 
(1993), Kibria (2003), Khalaf and Shukur (2005), Alkhamisi and Shukur [17], Mansson et al. [20], Ozkale 
(2014), Dawoud and Kaciranlar (2015), Ozbay et al. (2016). For each replicate, the estimated MSE for each of 
the estimators �∗ is obtained as follows: 
 

���(�∗) =
�

����
∑ (�∗ − �)�(�∗ − �),����

���                                                                       (2.11) 

 
where �∗ would be any of the estimators earlier listed in Section 2.0. The estimator with the smallest estimated 
MSE is considered best. 
 

3 Results and Discussion 
 
3.1 Result from hussein data 
 
The data set used in this study was adopted from the study of Hussein and Zari [34]. The regression model was 
defined as: 
 

Y� = β�X�� + β�X�� + β�X�� + U�	                                                                         (2.12) 
 

t=1, 2, …, 31 
 
where;  
 

Y� is the product value in the manufacturing sector 
X�� is the value of the imported intermediate raw materials 
X�� is the value of imported capital commodities  
X�� is the value of imported raw material 

 
The estimated model using the ordinary least squared is: 

 
�� = 208.88 + 0.611�� + 1.256�� − 1.217��                        (2.13) 

 
Model (2.13) was diagnosed using the variance inflation factor (VIF) and the Durbin-Watson (DW) test. 
According to the Kibria and Lukman [26], there is multicollinearity when the VIF exceeds 10. The variance 
inflation factor for the variables are: 128.29, 103.43, and 70.87. It is evident from the VIFs that the model 
suffers from the problem of multicollinearity. The DW value is 0.905 which shows that the error terms are 
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correlated. Therefore, the model suffers from multicollinearity and autocorrelation. The ��� (correlation form) 
is 
 

� = �
1 0.9947 0.9923

0.9947 1 0.9905
0.9923 0.9905 1

� 

 
Table 1. Regression coefficients and mean squared error 

 
Coef OLS MLE CC RMLE PW RP TSK 

 B0 208.885 345.318 452.101 365.957 606.62 -0.2365 -316.61  

B1 0.613 0.488 0.311 0.44 0.437 0.149 0.742  

B2 1.256 1.146 1.572 1.104 1.121 -0.349 1.171  

B3 -1.221 -1.418 -1.871 -1.374 -1.403 167.24 -1.385  
MSE 12.8075 20.6608 21.321 397.3 9.8659 1.9597 1.9252  
RMSE 3.579 4.545 4.617 19.932 3.141 1.400 1.388  

 
The autocorrelation value ρ was obtained using the Cochrane-Orcutt and Prais-Winsten estimator. The rhos are 
0.9051 and 0.86387, respectively. The rhos are employed to transform the original data. The results of the model 
subject to the estimators are in Table 1. 
 
The intercept term of RP and TSK has a negative sign while that of other estimators has a positive sign. This 
might be due to the multicollinearity effect on other estimators such as OLS, MLE, CC, RMLE, and PW. 
According to Lukman et al. [24,25], the regression coefficient might exhibit a wrong sign when there is 
multicollinearity. The result in Table 1 shows that the proposed estimator TSK produced the most efficient 
estimates in terms of lower mean squared error and root mean square. Restricted maximum likelihood estimator 
has the least performance when there is multicollinearity and autocorrelated error.  
 

3.2 French economy data 
 
The detail about this data set is initially described in Chatterjee and Price (1977) and later available in the 
following references Malinvard (l980) and Liu (1993). It comprises of one predictand, Imports and three 
predictor variables (domestic production, stock information and domestic consumption) with eighteen 

observations. The variance inflation factors are ,688.4691 VIF ,047.12 VIF 338.4693 VIF
and the condition number 32612.  It is evident that there is multicollinearity in the model. from the VIFs that the 
model suffers from the problem of multicollinearity. The DW statistic and the p-value are 0.2429 and 0.0000, 
respectively. The DW result revealed that the model follows an AR(1), that is there is autocorrelation problem. 
Hence, the model suffers from both problems. 
 

Table 2. Regression coefficients and mean squared error 
 
Coef OLS MLE CC RMLE PW RP TSK 

 B0 -19.71 -23.345  -22.221 -23.738 -23.402 18.594 23.387  

B1 0.033 -0.031  -0.042 -0.028 -0.031 1.351 0.038  

B2 0.406 0.479  0.512 0.474 0.479 -0.309 0.424  

B3 0.242 0.365  0.420 0.371 0.366 -1.837 0.122  
MSE 7.6574 8.6687  4.321 64274.95 3.464 7.139 3.365  
RMSE 2.767 2.944 2.079 253.525 1.861 2.672 1.834  

 
The result in Table 2 also shows that the proposed estimator has the lowest mean squared error and root mean 
square and is considered best. The result of the restricted maximum likelihood is the worst due to the presence 
of multicollinearity. The TSK estimator result is also consistent.  
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4 Conclusion 
 
Ordinary Least Square (OLS), Maximum likelihood, Restricted maximum likelihood, Prais-Winsten and 
Cochran Orcutt estimators could not perform well in term of their Mean Squared Error (MSE) in the presence of 
multicollinearity and autocorrelation. The restricted maximum likelihood was even observed to be the worst of 
the estimators since has the largest value of mean square error (MSE). It is however observed that in the both 
instances of the application to real life data set, the Two Stage K-L estimator perform better than the all other six 
estimators when both problems exist. Finanly, this study confirms the simulation study result in work of Zubair 
& Adenomon [3] which also shows that the two stage K-L estimator is most prefer in fitting a linear model 
when the assumptions of multicollinearity and autocorrelation is violated.  
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Appendix 
 

Code for the Application to Real-Life Data 
 

library(prais) 
library(orcutt) 

library(nlme) 

library(neuralnet) 

library(matlib) 

library(lmtest) 

dd=read.csv(file.choose(),header=T) 

hildreth_lu=function(resp,regr){ 

  rh=seq(-1,1,.1) 

  msess=NULL 

  for(r in 1:length(rh)){ 

    xt=regr 

    yt=resp 

    t=2:length(yt) 
    yt[t]=yt[t]+rh[r]*yt[(t-1)] 

    xt[t,]=xt[t,]+rh[r]*xt[(t-1),] 

    dat=data.frame(yt,xt) 

    bhat=coef(lm(yt~.-1,data=dat)) 

    msess=rbind(msess,sum((yt-xt%*%bhat)^2)) 

  } 

  tab=data.frame(rh,msess) 

  tab=subset(tab,msess!=0) 

  rho.min=rh[which.min(tab$msess)] 

   

  xt2=regr 

  yt2=resp 

  t=2:length(resp) 
  yt2[t]=yt2[t]+rho.min*yt2[(t-1)] 

  xt2[t,]=xt2[t,]+rho.min*xt2[(t-1),] 

  dat2=data.frame(yt2,xt2) 

  ols2=coef(lm(yt2~.-1,dat2)) 

  return(list(coefficients=ols2,rho=rho.min, tab=tab)) 

} 

 

#ordinary regressions 

 

olsall=lm(Y~.,data=dd,x=T,y=T) 

ols1=olsall$coefficients 

x=olsall$x 

    l=t(x)%*%x 

    q=as.matrix(eigen(l)$vectors) 
    e=eigen(l)$values 

sig=summary(olsall)$s 

 

mle <- gls(Y~., data=dd, correlation=corAR1(form=~1), method="ML") 

sigm=summary(mle)$s 

mle1=mle$coefficients 
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model2<-prais_winsten(Y~., data=dd)  

sigp=summary(model2)$s 

 

rmle <- gls(Y~., data=dd, correlation=corARMA(p=1), method="REML") 

sigrm=summary(rmle)$s 
rmle1=rmle$coefficients 

 

praisall=prais_winsten(Y~.,data=dd) 

prais1=praisall$coefficients 

rhop=tail(praisall$rho,n=1) 

 

cocall=cochrane.orcutt(olsall) 

coc1=cocall$coefficients 

rhoc=cocall$rho 

sigc=111.2992 

 

y=olsall$y 

x=olsall$x 

hilu=hildreth_lu(y,x) 
hilu1=hilu$coefficients 

rhoh=hilu$rho 

 

tp=2:length(y) 

x_prais=x[tp,]-c(rhop)*(x[(tp-1),]) 

y_prais=y[tp]-c(rhop)*y[(tp-1)] 

 

x_coc=x[tp,]-c(rhoc)*(x[(tp-1),]) 

y_coc=y[tp]-c(rhoc)*y[(tp-1)] 

 

x_hlu=x[tp,]-c(rhoh)*(x[(tp-1),]) 

y_hlu=y[tp]-c(rhoh)*y[(tp-1)] 

 
# Biased Regressions 

k=deviance(olsall)*length(ols1)/sum(ols1^2) 

k1=sqrt(max(sig/((2*(ols1^2))+(sig/e)))) 

#k1=sqrt(max(ols1^2/((sig/e)+(ols1^2)))) 

I=diag(1,length(ols1)) 

# K-L 

kl=solve(t(x)%*%x+k1*I)%*%(t(x)%*%x-k1*I)%*%ols1 

kl_pr=solve(t(x_prais)%*%x_prais+k1*I)%*%(t(x_prais)%*%x_prais-k1*I)%*%prais1 

kl_coc=solve(t(x_coc)%*%x_coc+k1*I)%*%(t(x_coc)%*%x_coc-k1*I)%*%prais1 

 

mseols=sig*sum(1/e) 

mseml=sigm*sum(1/e) 

mserml=sigrm*sum(1/e) 
msep=sigp*sum(1/e) 

msec=sigc*sum(1/e) 

 

msekl=sig*sum(((e-k1)^2)/(e*(e+k1)^2))+(4*(k1^2))*sum((ols1^2)/(e+k1)^2) 

msekl_pr=sigp*sum(((e-k1)^2)/(e*(e+k1)^2))+(4*(k1^2))*sum((ols1^2)/(e+k1)^2) 

msekl_coc=sigc*sum(((e-k1)^2)/(e*(e+k1)^2))+(4*(k1^2))*sum((ols1^2)/(e+k1)^2) 
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res=cbind(mseols,mseml,mserml,msep,msekl,msekl_pr,msekl_coc) 

print(res) 

res1=cbind(ols1,mle1,rmle1,prais1,kl,kl_pr,kl_coc) 

print(res1) 

res2=cbind(sig,sigm,sigrm,sigp) 
print(res2) 
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