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Abstract

When estimating a population proportion p within margin of error m, a preliminary sample of size n is taken
to produce a preliminary sample proportion y/n, which is then used to determine the required sample size
(y/n)(1 —y/n)(z/m)?, where z is the critical value for a given level of confidence. The population is assumed
to be infinite, so these Bernoulli(p) observations are mutually independent. Upon taking a new sample
based on the required sample size, the coverage probabilities on p are determined exactly for various values
of m, n, p, and z, using a commonly-used formula for a confidence interval on p. The coverage probabilities tend
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to be somewhat smaller than their nominal values, and tend to be a lot smaller when np or n(1 — p) is small,
which would result in anti-conservative confidence intervals. As a more minor conclusion, since the given
margin of error m is not relative to the population proportion p, then the required sample size is larger for
values of p nearest to 0.5. The mean and standard deviation of the required sample size are also computed
exactly to provide prospective, regarding just how large or how small these required sample sizes need to be.

Keywords: Bernoulli distribution; binomial distribution; sample size determination; confidence interval.

2020 Mathematics Subject Classification: 62F10.

1 Introduction

Determining the appropriate sample size is an important component of research design, as it directly influences
the credibility and utility of study outcomes; it impacts both a study’s ability to find meaningful effects and
the accuracy of the estimates derived from the data. If the sample size is insufficient, valid conclusions about
the data often cannot be made. This introduction synthesizes insights from a range of sources, focusing on
the methodologies for determining sample sizes for means and proportions. These approaches predicate the
need for the evaluation of the common formula for sample size determination using the coverage probabilities
we are evaluating. Accurately determining sample size is crucial in probability as it significantly impacts the
statistical power of a study. Foundational principles guide researchers in the statistical community, underscoring
the theoretical underpinnings necessary for understanding sample size calculations and their implications for
research outcomes using a commonly-used equation [1, 2, 3]. The importance of sample size determination is
studied across various study designs and its impact on the validity of research findings [4]. This work provides a
practical perspective on the challenges and considerations involved in sample size estimation, offering valuable
guidance for researchers.

The complexities associated with calculating sample size for two proportions is addressed, highlighting how
the choice of formula and software can significantly influence the calculated sample sizes [5]. This shows the
variability and potential inconsistencies in sample size determination practices.

Sample size estimation for health and social science research is explored, presenting principles and considerations
tailored to different study designs [6]. This review contributes to a deeper understanding of the factors influencing
sample size decisions and their implications for research in these fields.

Methodological insights into sample size calculation for comparing proportions and estimating intraclass correlation
coefficients, respectively, are provided [7, 8]. These contributions highlight the mathematical and statistical
considerations essential for accurate sample size determination in specific statistical analyses. An approach
to determine the optimal sample size for clinical trials, accounting for the population size, is proposed [9].
This approach emphasizes the significance of incorporating broader population characteristics into sample size
calculations, providing a nuanced perspective that improves upon conventional methodologies.

The foundational aspects of calculating sample sizes in clinical research is discussed [10]. This article articulates
the basic principles underlying sample size calculations, such as the importance of specifying the margin of error,
confidence level, and the expected effect size. A method for estimating population proportions is presented,
highlighting the potential for significant improvements in efficiency compared to traditional estimators [11].
This article shows the importance of statistical techniques in sample size calculation. Having a sufficient sample
size is needed when showing the prevalence of smoking, heart disease, diabetes, and other matters related to
health [12]. Showing differences between users and nonusers of electronic cigarettes regarding heart rate, blood
pressure, and oral temperature also requires a sufficient sample size [13].
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Our paper seeks to bridge the gap between the theoretical and practical aspects of sample size determination
by evaluating a commonly-used formula for sample size through the generation of coverage probabilities. This
approach contrasts with the existing literature which predominantly focuses on deriving sample sizes for specific
situations or using software tools for estimation. We are examining the performance of this particular formula
under different scenarios. By considering values producing extra low coverage probabilities, such as 94.0% or
lower when the nominal level is 95%, we seek to uncover potential limitations and biases associated with using
this formula in practical settings and applied research practices.

2 Method for Determining Coverage Probabilities

A common question in research is what sample size, N, is required when estimating a population proportion or
Bernoulli probability, p, for a given value of m, the margin of error, and nominal level of confidence, often set
to 95%. The required conservative sample size is

N = 0.25 (z/m)?, (2.1)

where z is the standard normal critical value and is 1.96 for 95% confidence. Note that a confidence interval on
p is often defined to be

p+zvp(l-p)/N, (22)

where p is the sample proportion of successes based on N independent Bernoulli observations.

If a small preliminary sample of size n produces y Bernoulli success and (n — y) Bernoulli failures, then a
preliminary estimate of p is p* = y/n. When p is near 0 or 1, then an approach more efficient than using
Equation 2.1 is setting the required sample size to N, = [ p*(1 — p*)(z/m)? | , which depends on y, where [7]
is the ceiling function which rounds any number n upward to its nearest integer. In the extremely rare situation
where y = 0 or y = n, we redefine the required sample size of the new sample to be N, = 1 rather than N, = 0.

Therefore,
Ny:max{ {%(17%)(%)2] ,1}. (2.3)

Once the required sample size, N, is determined for the new sample, then the final estimate of p is simply
p = x/Ny, where z is the number of Bernoulli successes from the new sample of size N. The required sample of
N, Bernoulli observations for the new sample does not include the n Bernoulli observations from the preliminary
sample, and all Bernoulli observations are assumed to be independently sampled with common mean, p.

Conditional on y, the conditional coverage probability using a new sample is the weighted average of 1( | z/N, —
p | < m), where the weights are the Binomial probabilities evaluated at x for a sample of size N, and the
given probability p. The indicator function 1(A) is defined to be one if the event A is true and zero otherwise.
Therefore, conditional on y, the conditional coverage probability is

N?J

> 1( ’ Niy—p’<m) (?) p*(1—p)e. (2.4)

=0

The values of y, the number of successes in the preliminary sample, are weighted according to the Binomial
probabilities evaluated at y for a preliminary sample of size n and the given probability p. Thus, for given values
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of m, p, z, and preliminary sample size n, the unconditional coverage probability is

S[S0( 2 oem) (B)ra-me] () wacms. e

where the values of N, are defined by Equation 2.3.

Thus, the unconditional mean of the required sample size Ny is

E(N,) =Y _N, (’;) p’ (1—p)" "

e [0} ()ra-me e

and the unconditional second population moment of N, is

based on Equation 2.3.

Therefore, the unconditional standard deviation of N, is

on, = ENZ) — (BN . (2.8)

The R-code used to produce the coverage probabilities as defined by Equation 2.5, along with the unconditional
mean and standard deviation of the required sample size N, as defined by Equations 2.6 and 2.8, is shown
below. This R-code, therefore, produced all of the results in the tables below, and the required sample size is
abbreviated as N. Hence, these results are based on exact calculation, not simulation.

coverage <- function( n=100, p=0.5, m=0.01, nom.prob=0.95 ) {
INPUT

‘n’ is the preliminary sample size.

p’ is the true probability of success.

‘m’ is the desired margin of error.

‘nom.prob’ is the nominal probability.

OUTPUT

‘coverage.prob’ is the true coverage probability.

‘mean.N’ is the average required sample size.

‘sd.N’ is the standard deviation of the required sample size.
<- gnorm( (nom.prob+1)/2 )

4

N # # # # # H# # H# H#
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coverage.prob <- 0 ; mean.N <- 0 ; mean.N.squared <- 0
for (y in 0:n) {
N <- max( ceiling( y*(n-y)*(z/n/m)"2 ), 1 ) ; x <= 0:N
coverage.prob <- coverage.prob + sum( ( abs(x/N-p) <= m ) *
dbinom( x, N, p) ) * dbinom(y,n,p)
mean.N <- mean.N + N * dbinom(y,n,p)
mean.N.squared <- mean.N.squared + N°2 * dbinom(y,n,p) }
sd.N <- sqrt( mean.N.squared - mean.N"2)
return( list( coverage.prob=coverage.prob, mean.N=mean.N, sd.N=sd.N ) ) }

Values selected for margin of error are m = 0.01, m = 0.02, and m = 0.03, corresponding to Tables 1, 2, and 3,
respectively. Nominal probabilities are set to 90%, 95%, and 99%. Preliminary sample sizes are n = 25, 50, 75,
and 100. The population proportion was set to p = 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5, noting that selecting values
of p above 0.5 would be redundant due to symmetry.

Table 1. Coverage probabilities for margin of error of 1%

m = 0.01 Nominal Probab. is 0.9 Nominal Probab. is 0.95 Nominal Probab. is 0.99

Coverage Mean SD Coverage Mean SD Coverage Mean SD

D n | Probab. of N, of N, | Probab. of N, ofN, | Probab. of N, ofN,
0.05 25 0.6629 1234 1021 0.6884 1753 1450 0.7148 3026 2505
0.05 50 0.7991 1260 736 0.8494 1789 1046 0.8965 3089 1806
0.05 75 0.8472 1268 605 0.8973 1801 859 0.9498 3110 1484
0.05 100 0.8662 1273 526 0.9157 1807 746 0.9653 3121 1289
0.1 25 0.8114 2338 1254 0.8593 3320 1780 0.9032 5733 3075
0.1 50 0.8670 2387 903 0.9201 3389 1281 0.9687 5853 2213
0.1 75 0.8805 2403 741 0.9332 3412 1052 0.9792 5892 1818
0.1 100 0.8847 2411 644 0.9372 3423 914 0.9828 5912 1579
0.2 25 0.8729 4156 1269 0.9254 5901 1803 0.9736 10192 3113
0.2 50 0.8884 4243 908 0.9403 6024 1289 0.9847 10404 2227
0.2 75 0.8925 4272 744 0.9440 6065 1057 0.9868 10475 1825
0.2 100 0.8944 4286 646 0.9457 6085 917 0.9878 10510 1584
0.3 25 0.8865 5455 1003 0.9386 7745 1424 0.9842 13376 2459
0.3 50 0.8943 5569 706 0.9450 7906 1002 0.9877 13655 1730
0.3 75 0.8962 5606 575 0.9469 7960 816 0.9886 13748 1410
0.3 100 0.8977 5625 498 0.9479 7987 706 0.9890 13794 1220
0.4 25 0.8907 6234 623 0.9437 8851 885 0.9873 15287 1529
0.4 50 0.8954 6364 410 0.9471 9036 582 0.9889 15606 1005
0.4 75 0.8973 6407 326 0.9482 9097 462 0.9893 15712 798

0.4 100 0.8979 6429 278 0.9485 9128 395 0.9895 15765 682

0.5 25 0.8923 6494 375 0.9449 9220 532 0.9881 15924 919

0.5 50 0.8963 6629 189 0.9476 9412 269 0.9892 16256 465

0.5 75 0.8982 6674 127 0.9488 9476 180 0.9895 16367 311

0.5 100 0.8981 6697 95 0.9487 9508 135 0.9896 16422 233

Coverage probabilities smaller than 86%, 92%, and 97% regarding nominal probabilities of 90%, 95%, and
99%, respectively, are in yellow.

Coverage probabilities within 0.5% of the nominal probabilities are in pink.
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3 Results and Discussion

Every coverage probability in Tables 1, 2, and 3 fails to achieve the nominal probability of 90%, 95%, or 99%,
although in many cases the difference between the coverage and nominal probabilities is evident only in the
third significant digit. When min{np, n(l — p)}, the mean number preliminary Bernoulli success or failures, is
small, the coverage probability can be substantially lower than the nominal probability, as shown in yellow in
the tables. This difference in probabilities is only slightly affected by the margin of error being m = 0.01, 0.02,
or 0.03. Therefore, Tables 1, 2, and 3 produce fairly similar results. For large values of min{np, n(1l — p)}, the
coverage probability tends to be extremely close to the nominal probability, as shown in pink.

Table 2. Coverage probabilities for margin of error of 2%

m = 0.02 Nominal Probab. is 0.9 Nominal Probab. is 0.95 Nominal Probab. is 0.99
Coverage Mean SD Coverage Mean SD Coverage Mean SD
D n | Probab. of N, of N, | Probab. of N, of N, | Probab. of N, of N,
0.05 25 0.6702 309 255 0.6850 438 362 0.7141 757 626
0.05 50 0.8229 315 184 0.8518 448 261 0.8961 773 451
0.05 75 0.8550 317 151 0.8950 450 215 0.9506 778 371
0.05 100 0.8716 318 131 0.9154 452 187 0.9665 780 322
0.1 25 0.8153 585 314 0.8574 830 445 0.9045 1433 769
0.1 50 0.8693 597 226 0.9184 848 320 0.9697 1463 553
0.1 75 0.8828 601 185 0.9320 853 263 0.9790 1473 454
0.1 100 0.8842 603 161 0.9369 856 229 0.9830 1478 395
0.2 25 0.8769 1040 317 0.9268 1476 451 0.9739 2548 778
0.2 50 0.8912 1061 227 0.9404 1506 322 0.9847 2601 557
0.2 75 0.8936 1068 186 0.9439 1517 264 0.9867 2619 456
0.2 100 0.8968 1072 161 0.9456 1522 229 0.9878 2628 396
0.3 25 0.8865 1364 251 0.9384 1937 356 0.9843 3344 615
0.3 50 0.8933 1392 176 0.9448 1977 250 0.9878 3414 433
0.3 75 0.8961 1402 144 0.9468 1990 204 0.9887 3437 353
0.3 100 0.8967 1407 124 0.9474 1997 177 0.9890 3449 305
0.4 25 0.8916 1559 156 0.9438 2213 221 0.9874 3822 382
0.4 50 0.8968 1591 103 0.9474 2259 146 0.9890 3902 251

0.4 75 0.8983 1602 81 0.9483 2275 116 0.9894 3928 200
0.4 100 0.8985 1608 70 0.9488 2282 99 0.9895 3942 170
0.5 25 0.8921 1624 94 0.9432 2305 133 0.9882 3982 230
0.5 50 0.8965 1658 47 0.9463 2353 67 0.9892 4064 116
0.5 75 0.8984 1669 32 0.9478 2369 45 0.9895 4092 78

0.5 100 0.8993 1675 24 0.9482 2377 34 0.9896 4106 58

Coverage probabilities smaller than 86%, 92%, and 97% regarding nominal probabilities of 90%, 95%, and
99%, respectively, are in yellow.

Coverage probabilities within 0.5% of the nominal probabilities are in pink.

The mean of the Ny, the required sample size, is larger for the values of p closest to 0.5, as anticipated, and
the preliminary sample sizes n have little impact on the mean of N,. However, the standard deviation of N,
decreases for the larger values of n, as anticipated. The larger values of the margin of error obviously produce
smaller values of the mean of NV,.
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Table 3. Coverage probabilities for margin of error of 3%

m = 0.03 Nominal Probab. is 0.9 Nominal Probab. is 0.95 Nominal Probab. is 0.99
Coverage Mean SD Coverage Mean SD Coverage Mean SD

p n | Probab. of N, of N, | Probab. of N, of N, | Probab. of N, of N,
0.05 25 0.6628 138 113 0.6936 195 161 0.7147 337 278
0.05 50 0.7890 140 82 0.8562 199 116 0.8996 344 201
005 75 0.8665 142 67 0.8892 200 96 0.9513 346 165
0.05 100 0.8740 142 58 0.9269 201 83 0.9669 347 143

0.1 25 0.8072 260 139 0.8552 369 198 0.9026 637 341
0.1 50 0.8721 266 100 0.9216 377 142 0.9674 651 246
0.1 75 0.8814 268 82 0.9320 380 117 0.9784 655 202
0.1 100 0.8910 268 72 0.9388 381 102 0.9824 657 175
0.2 25 0.8770 462 141 0.9272 656 200 0.9734 1133 346
0.2 50 0.8916 472 101 0.9406 670 143 0.9848 1157 248
0.2 75 0.8958 475 83 0.9446 674 117 0.9869 1164 203
0.2 100 0.8964 477 72 0.9460 676 102 0.9880 1168 176
0.3 25 0.8883 607 111 0.9400 861 158 0.9844 1487 273
0.3 50 0.8951 619 78 0.9462 879 111 0.9878 1518 192

0.3 75 0.8972 623 64 0.9473 885 91 0.9885 1528 157
0.3 100 0.8978 626 55 0.9483 888 78 0.9889 1533 135
0.4 25 0.8895 693 69 0.9431 984 98 0.9875 1699 170
0.4 50 0.8947 708 45 0.9469 1004 65 0.9889 1734 112
0.4 75 0.8969 712 36 0.9482 1011 51 0.9894 1746 89
0.4 100 0.8970 715 31 0.9482 1015 44 0.9896 1752 76
0.5 25 0.8938 722 42 0.9439 1025 59 0.9883 1770 102
0.5 50 0.8958 737 21 0.9479 1046 30 0.9891 1807 52
0.5 75 0.8971 742 14 0.9477 1053 20 0.9895 1819 34
0.5 100 0.8964 745 11 0.9485 1057 15 0.9895 1825 26

Coverage probabilities smaller than 86%, 92%, and 97% regarding nominal probabilities of 90%, 95%, and
99%, respectively, are in yellow.

Coverage probabilities within 0.5% of the nominal probabilities are in pink.

4 Conclusions

A preliminary sample of independent Bernoulli random variables may be taken to determine the required sample
size for estimating the Bernoulli mean, p, within a given margin of error for a fixed level of confidence. When
the mean number of successes or failures of this Bernoulli random variable in the preliminary sample is no more
than 5, then the coverage probabilities tend to be severely smaller than their nominal levels, leading to severely
anti-conservative confidence intervals. When the mean number of success or failures is between 5 and 15, the
coverage probabilities tend to be only somewhat smaller. When the mean number of success or failures is larger
than 15, the coverage probabilities tend to be extremely close and only slightly smaller than their nominal levels.
Therefore, in the preliminary sample, taking a preliminary sample size to ensure that np and n(1 — p) both
exceed 15 is crucial when trusting the commonly-used equation 2.3 for determining the required sample size.
These conclusions herein are limited to situations where equation 2.3 is used to determine the required sample
size. For example, future research might involve replicating these studies for finite population sizes, in which
case equation 2.3 would be replaced by an equation which includes a finite population correction [14]. The mean
and standard deviation of the required sample sizes N, are listed in the table mainly for perspective of the
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reader, but do show that they are only slightly impacted by the preliminary sample size n for a given margin of
error m and nominal probability.
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