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Analysis of Machine Learning Methods for COVID-19 
Detection Using Serum Raman Spectroscopy
David Chen

Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada

ABSTRACT
One of the most challenging aspects of the emergent corona-
virus disease 2019 (COVID-19) pandemic caused by infection of 
severe acute respiratory syndrome coronavirus 2 has been the 
need for massive diagnostic tests to detect and track infection 
rates at the population level. Current tests such as reverse 
transcription-polymerase chain reaction can be low- 
throughput and labor intensive. An ultra-fast and accurate 
mode of detecting COVID-19 infection is crucial for healthcare 
workers to make informed decisions in fast-paced clinical set-
tings. The high-dimensional, feature-rich components of Raman 
spectra and validated predictive power for identifying human 
disease, cancer, as well as bacterial and viral infections pose the 
potential to train a supervised classification machine learning 
algorithm on Raman spectra of patient serum samples to detect 
COVID-19 infection. We developed a novel stacked subsemble 
classifier model coupled with an iteratively validated and auto-
mated feature selection and engineering workflow to predict 
COVID-19 infection status from Raman spectra of 250 human 
serum samples, with a 10-fold cross-validated classification 
accuracy of 98.0% (98.6% precision and 98.5% recall). 
Furthermore, we benchmarked nine machine learning and arti-
ficial neural network models when evaluated using eight stan-
dalone performance metrics to assess whether ensemble 
methods offered any improvement from baseline machine 
learning models. Using a rank-normalized scores derived from 
the performance metrics, the stacked subsemble model ranked 
higher than the Multi-layer Perceptron, which in turn ranked 
higher than the eight other machine learning models. This study 
serves as a proof of concept that stacked ensemble machine 
learning models are a powerful predictive tool for COVID-19 
diagnostics.
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Introduction

The coronavirus pandemic (COVID-19) caused by severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) has evolved into an international 
public health crisis (Hartley and Perencevich 2020). There exists 
a tremendous burden on doctors, experts, and material resources needed to 
massively screen and triage the influx of suspected infected patients (Miller 
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et al. 2020). The early detection of SARS-CoV-2 infection in infected patients 
is crucial for medical teams to manage patient populations effectively and for 
policymakers to introduce proactive measures designed to minimize transmis-
sion rates.

Diagnostic assays currently used to detect SARS-CoV-2 include reverse 
transcription quantitative polymerase chain reaction (RT-qPCR) and serolo-
gical enzyme-linked immunosorbent assay (ELISA). The gold standard RT- 
qPCR method for developing the diagnostic assays is time-consuming and 
requires pre-treatment to extract viable RNA from samples (Schmittgen and 
Livak 2008). Faster RT-qPCR protocols have shown to have technical perfor-
mance limitations that lead to reduced sensitivity and increased variability 
(Hilscher 2005). Moreover, the ELISA technique is dependent on the sensi-
tivity of the immunoassay and requires optimal coupling between an enzyme- 
coupled antibody and abundant viral-specific antigens (Lequin 2005). Raman 
spectroscopy has recently been proposed as a novel mode of detection of 
SARS-CoV-2 in vitro (Desai et al. 2020).

Raman spectroscopy involves the irradiation of a sample by 
a monochromatic light source (Jones et al. 2019). The incident photos undergo 
inelastic scattering after interacting with the sample, which is measured by the 
wavelengths of the scattered photons and associated intensities (Jones et al. 
2019). The pattern of Raman scatter with characteristic waveform features can 
be used to quantitatively describe the vibrational motion of molecules in the 
sample as a unique vibrational fingerprint (Ralbovsky and Lednev 2020). The 
Raman spectrum is a representation of the intensity of the scatter photon 
recorded against the Raman shift and often visualized as a spectrum.

The Raman spectroscopy biosensing technique has previously been used to 
detect hepatitis B virus, dengue virus, and cancer subtypes from human sera 
samples to a high degree of sensitivity comparable to current diagnostic assay 
performance (Khan et al. 2018a, 2016; Khan et al. 2018c; Ralbovsky and 
Lednev 2020). Spectral analyses are often coupled with a range of machine 
learning models for predictive power, ranging from simple logistic regression 
models, to advanced multivariate support vector machine and deep learning 
algorithms (Elias et al. 2004; Gastegger, Behler, and Marquetand 2017; Lussier 
et al. 2020). More recently, novel transfer learning and deep learning models 
have been developed to diagnose COVID-19 pneumatic symptoms from chest 
CT scans (Ko et al. 2020; Silva et al. 2020; Wang et al. 2020). The proven 
accuracy of state-of-the-art machine learning algorithms for diagnostic assess-
ment poses significant potential and room for improvement for comparable 
models trained on similarly feature-rich, high-dimensional serum Raman 
spectra data.

Artificial-intelligence-driven tools can be trained to recognize certain fea-
tures from the vibrational fingerprint of Raman spectra and predict patient 
infection status with varying degrees of accuracy, sensitivity, and selectivity. 
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The minimally invasive sample collection for Raman spectroscopy methods in 
combination with machine learning techniques serves as an potential objective 
and ultra-fast diagnostic tool in clinical settings (Khan et al. 2018b; Olaetxea 
et al. 2020; Ralbovsky and Lednev 2020). However, there still remains a debate 
over the optimal machine learning model to be used with the high- 
dimensional, highly correlated attributes of Raman spectral data (Lussier 
et al. 2020). Additionally, the best model for predictive performance in 
a clinical diagnostic setting is only as good as the metrics that defines its 
performance. The predictive value of the routinely used accuracy metric to 
evaluate novel model performance should also be considered alongside sensi-
tivity and specificity metrics as well as in comparison to reference models to 
holistically evaluate novel algorithms (Handelman et al. 2019; Sharma et al. 
2019).

To assess the efficacy of different supervised machine learning algorithms to 
predict patient infection status using Raman spectral data, we have compara-
tively benchmarked a broad range of machine learning models trained on the 
processed Raman scatter spectra of serum samples from COVID-19-infected 
and healthy patients across eight performance metrics. Furthermore, we have 
iteratively validated a novel, stacked subsemble binary classifier coupled with 
a feature selection and engineering pipeline to achieve highly accurate predic-
tion of infection status. Overall, we aim to identify the best-performing 
machine learning algorithms and develop and optimize an ensemble techni-
que for prediction of patient infection status from Raman spectra as a potential 
objective, auxiliary tool to make informed clinical decisions during an evol-
ving worldwide pandemic.

Methods

Dataset

This study employed a subset of Raman spectra data of serum samples 
collected from patients suspected or confirmed to have COVID-19 and 
serum samples collected from healthy controls (Yin et al. 2020). The raw 
spectra of the samples were downloaded in preprocessed form before baseline 
correction and removal of instrumental artifacts. Raman shifts due to unde-
sired noise that manifest in the raw spectrum baseline were normalized by 
subtracting the mean of the 10 replicates for the Raman intensities of the 
negative control blank from each sample. Outlier samples of the dataset 
defined as having wavenumber intensities greater than or less than 3 standard 
deviations from the mean were excluded from the training and validation 
dataset. The final set of spectra contained 250 total spectra labeled as part of 
two patient infection status classes: Healthy (124 samples) and COVID-19 
(126 samples).
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Wiener Filter

Wiener estimation denoising has been used to calibrate raw Raman spectra 
from human cells with comparable performance to moving-average filtering 
and Savitzky—Golay filtering and greater performance on spectra with low 
signal-to-noise ratio (Bai and Liu 2019). The wiener filter was used to smooth 
the Raman spectra of samples. Spectra baseline normalization and smoothing 
before performing PCA reduction has been shown to increase classification 
accuracy (Ishikawa and Gulick 2013). We suspect that future work will likely 
show improvements in classification accuracy using spectral data with fine 
tuned use of denoising filters for baseline correction.

Feature Selection

The decision tree-based ExtraTrees classifier was used for feature selection to 
extract the top 100 features based on feature importance score. The ExtraTrees 
classifier was chosen due to its faster speed, greater memory-efficiency, and 
decreased complexity compared to genetic algorithms for feature selection. 
The aim of ExtraTrees feature selection is to inform decisions about which 
features in an input dataset should be trained on to maximize predictive 
performance and reduce dimensionality by minimizing the number of features 
selected. The by-product of reduced dimensionality also improves execution 
time, memory usage, and data efficiency (Handelman et al. 2019). 
A characteristic feature of decision-tree-based classifiers such as ExtraTrees 
is that they are able to quantitatively label features with a feature importance 
score during each split of the forest architecture to quantify the contribution of 
each feature to the predicted outcome.

Standard Normal Variate Normalization

Standard Normal Variate (SNV) method was used to perform column- 
wise normalization by subtracting each wavenumber intensity by the 
mean across all samples and then dividing by the standard deviation 
across all samples. After SNV, the Raman spectra will be normalized 
with a mean of 0 and a standard deviation of 1. The normalization 
makes all spectra comparable in terms of intensities and corrects for 
systematic errors across samples.

Principal Component Analysis

Principal Component Analysis (PCA) was used to reduce subset of 100 
features selected by the ExtraTrees classifier to 26 principal components that 
captured at least 99% of the total variability of the selected dataset to minimize 
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information loss. This approach creates novel, uncorrelated variables that 
maximize variance. PCA maintains the predictive performance of machine 
learning classifiers and minimizes overfitting to complex, noisy patterns often 
found in high-dimensional data (Howley et al. 2005). The implementation of 
PCA as a data pre-processing step for common machine learning models 
trained on high-dimensional, spectral data has shown to improve predictive 
performance (Howley et al. 2005).

Model Selection

In this study, nine machine learning models were included: Logistic 
Regression (LR), K Nearest Neighbors (KNN), Support Vector classifier 
(SV), Decision Tree classifier (DT), Adaboost classifier (AB), Gradient 
Boost classifier (GB), Random Forest classifier (RF), ExtraTrees classifier 
(ET), and Multi Layer Perceptron classifier (MLP). The diversity of the 
nine machine learning models were selected to benchmark their perfor-
mance to predict patient infection status against a meta-stacked ensem-
ble classifier pipeline based on the following reasons:

(1) Eight out of the nine machine learning models were able to model 
the nonlinear relationship between the predictors (Raman inten-
sity) and output label (patient infection status),

(2) Each machine learning model has been thoroughly validated in its use 
of different forms of independent variables and measurement scales,

(3) Each model does not have strict assumptions when trained and vali-
dated on high-dimensional Raman spectral data, and

(4) A review of the current literature indicated no comprehensive studies 
that benchmarked a diverse set of machine learning models and a meta- 
stacked ensemble classifier for assessing patient infection status using 
Raman spectral data.

The hyperparameters of each baseline machine learning model were 
exhaustively considered using GridSearchCV or randomly sampled 
among a number of candidates from a parameter space with a specific 
distribution using RandomizedSearchCV from the Scikit Learn library 
(Pedregosa et al. 2011). Benchmark model performance was optimized to 
achieve a minimum of 90% mean accuracy or greater and comparable 
results from alternative performance metrics including sensitivity, speci-
ficity, and precision. Model parameters are described in Supplementary 
Information.
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Meta-Stacked Subsemble Model

The stacked ensemble model architecture consists of two layers of machine 
learning models. The first layer of the architecture comprises eight indepen-
dently trained base machine learning models. The meta model in the second 
layer uses the predictions of the base models from the first layer as a new 
training set to make the final class prediction for each sample. The stacking 
ensemble meta model approach is used since the meta model in the second 
layer is able to capture the variance and complex patterns from multiple 
independent base model predictions. Moreover, the meta model may be able 
to distinguish poor performing base models and compensate by using better 
performing base models for specific subsets of the data. To optimize the 
stacked model performance, the eight base models were chosen to be as diverse 
as possible in their method of class prediction and their hyperparameters were 
tuned to achieve above 90% 10-fold cross-validated accuracy independently. 
The meta model was structured as a three-layer perceptron due to its top-in- 
class performance when parameterized with three hidden layers (50, 30, 10), 
the ReLU activation function and stochastic gradient descent method with an 
adaptive learning rate.

When predicting class labels, the Multi-layer Perceptron meta learner in 
the second, higher-order layer generally performs better when trained on 
feature-rich class probabilities rather than the predicted class outcome. 
Thereby, a probabilistic ensemble method was used where base classifiers each 
returned a matrix composed of the probability that a sample is a member of 
each class. Thereby, the meta learner is able to consider class probabilities based 
on the confidence of each base classifier in their prediction and model more 
nuanced patterns in their prediction rather than only consider class member-
ship outcome as seen in traditional hard-voting ensemble architectures.

Finally, we used an subsemble adaptation of the stacked ensemble archi-
tecture first proposed by Sapp et al. to construct the novel ensemble classifier 
(Sapp, van der Laan, and Canny 2013). Subsembles are based on the idea that 
localities of feature space have unique properties that are lost when traditional 
models are trained globally on the entire dataset (Sapp, van der Laan, and 
Canny 2013). Subsembles partition the feature space and trains base models on 
each partition, allowing for base models to optimize to local features. The 
feedforward method used the class probabilities output from the base layer to 
train the meta model. The meta model is tasked with global generalization 
across all partitions of the dataset. This technique is particularly powerful 
when data structures are multi-modal or have characteristic spectral waveform 
features such as Raman spectra. Subsembles allow base estimators to fit subsets 
of features to estimate local distributions and facilitates the generalization 
performance of the meta learner when training on high-dimensional, feature- 
rich data.
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Model Training and Validation

The current configuration of K-fold cross-validation partitioned the 
dataset into 10 stratified subsets (k = 10), where each subset is made 
by preserving the percentage of samples for each class. The technique 
randomly partitions the original input dataset into k equal sized sub-
samples. Among the k subsamples, one subsample is used as the valida-
tion dataset and the remaining subsamples are used as the training 
dataset. Each partitioned subsample will be used as a validation dataset 
and the remaining dataset used for model training in successive itera-
tions of the cross-validation procedure. The same train-test procedure 
will be repeated k times. Each of the nine baseline models and the meta- 
stacked ensemble model were trained to extract characteristic features 
associated with one of two classes from the training dataset and pre-
dicted the identity of each sample in the validation dataset. This method 
prevents information leakage from the base models of the meta stacked 
ensemble model to the meta model for validation of performance 
metrics. Performance metrics for each iteration of the train-test proce-
dure of K-fold cross-validation were recorded for each baseline machine 
learning model and the meta-stacked ensemble model were recorded.

Performance Metrics

This study used several measurements to evaluate model performance, includ-
ing accuracy, precision, recall, F1-Score, area under the Receiving Operating 
Characteristic (ROC) curve, Cohen’s Kappa, and Matthew’s Correlation 
(Korotcov et al. 2017).

Model accuracy is a generalized measure of model robustness defined as 
the percentage of correctly identified class labels out of the total number of 
samples in the population. Model precision, also termed positive predictive 
value, is described as the probability that a predicted true label is indeed 
true. Model recall, also termed true positive rate or sensitivity, is described 
as the percentage of true class labels correctly identified by the model as 
true. The F1-score is an aggregate value composed of the harmonic mean of 
the recall and precision metrics. The subset of metrics composed of accu-
racy, precision, recall, and F1-score values are bound within the range of 0 
and 1, where higher values suggest improved model performance. The ROC 
curve is visualized by plotting the false positive rate as a function of the 
recall metric at successive decision thresholds. Decision thresholds are 
defined as the threshold between 0 and 1 where probability estimates 
above the threshold will assign a sample to a specific class. The area under 
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the ROC curve measures the ability for the model to distinguish between 
classes, where 1 indicates perfect classification and 0.5 indicates random 
classification.

Matthew’s correlation coefficient (MCC) is a measure of model correlation 
between observed and predicted binary classifications. The MCC metric 
accounts for true and false positives and negatives and is generally robust to 
class imbalance (Boughorbel et al. 2017). MCC has values bound within the 
range of −1 to 1, where −1 indicates total disagreement between observed and 
predicted labels and 1 indicates perfect agreement between observed and 
predicted labels. Cohen’s Kappa (CK) is another metric that measures the 
agreement between two classifiers who each independently classify every 
sample in the population into mutually exclusive categories (Sim and Wright 
2005). The kappa value quantifies the reliability for two independent classi-
fiers, normalized for how often the raters will agree by chance and is bound 
within the range of 0 to 1. A kappa score of 0 indicates that there is random 
agreement between classifiers and a kappa score of 1 indicates that there is 
perfect agreement between classifiers. Time taken for 10-fold cross-validated 
training and testing on the processed dataset was measured to quantify algo-
rithm time complexity.

Results

Figures 2a and 2b show the mean intensity along with the 95% confidence 
interval of Raman spectra of serum samples from healthy control patients and 
COVID-19-infected patients respectively. It is evident that the control serum 
spectrum showed higher amounts of phenylalanine-containing compounds 
indicated by more intense peaks at 1001 cm−1 and intense peaks associated 
with protein components at 1461–1466 cm−1 (González-Solís et al. 2014). 
Welch’s t-test was performed to determine significant differences between 
Raman spectra of serum samples as a function of wavenumber. It is evident 
that there are significant differences in the Raman spectra (p < .05) as a function 
of time, in particular between 550–650, 1600–1700, and 1800–1970 cm−1. If we 
examine peak similarity between Figures 1a and 1b, these plots show almost 
identical peaks at 810 cm−1, 840 cm−1, 1001 cm−1, 1150 cm−1, 1328 cm−1, and 
1459 cm−1. The mean healthy spectra at the six peak raman shifts consistently 
produces Raman intensity at >0.007 a.u. greater than mean COVID-19 spectra.

The mean Raman intensity that had the greatest absolute difference at three 
distinct wavenumbers between healthy control patients and COVID-19- 
infected patients were visualized as boxplot distributions in Figure 1c). 
Welch’s t-test showed a statistically significant difference (p < .05) between 
the means of Raman intensities between the two groups at 810, 842, and 
1001 cm−1 and indicates a greater mean intensity in healthy control patients 
at the selected wavenumbers.
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To evaluate the contribution of raman spectral features to the performance 
of machine learning models, the Extra Trees classifier was used to score 
features based on their importance score. Figure 1d plots the 10-fold cross- 
validated relative feature importance score using Extra Trees, where higher 
scores indicate features that are more likely to positively contribute to accurate 
classification of Raman spectral data and lower scores indicate poorly con-
tributing features.

Each feature is given a feature importance score and ranked based on this 
score. Using this metric, we were able to extract the top 100 features as the 
training dataset for downstream analysis and evaluation of machine learning 
models. We observed that the wiener filtering and feature selection procedure 
boosts accuracy of the ensemble classifier by between 3% and 5% compared to 
when trained on the original pre-processed dataset. Likewise, feature scaling 
was optimized using standard normal variate scaling following feature selec-
tion to produce marked increase in accuracy by 2 土 1.5% 10-fold cross- 
validated accuracy.

The Raman spectra used as training data for benchmarking machine learn-
ing models was processed using PCA to produce 26 principal components 
from 900 original features that cumulatively captured 99% of the total variance 
of the original dataset.

In Figure 3a, the PCA clustering of preprocessed Raman data shows that the 
separation between the different processed Raman spectra was not linearly 
separable between the first two principal components. This suggests that 
additional hyperplanes may exist in higher dimensions beyond two principal 
components and confirms the feature-rich complexity of the Raman spectral 
system. The pre-processed data showed that 87.1% of all the spectral variation 
was accounted for within the first two principal components. The first princi-
pal component explained 72.5% of the data variation and the second principal 

Figure 1. Two-layer stacking subsemble architecture.
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Figure 2. a) Mean of the Raman spectra and 95% confidence interval corresponding to serum 
samples from healthy patient controls (n = 150). b) Mean of the Raman spectra and 95% 
confidence interval corresponding to serum samples from COVID-19 infected patients (n = 159). 
c) Features scores by Extra Trees classifier for patient infection status from processed Raman 
spectra data. d) Boxplots showing the variation in distribution of raman intensities at 810, 842, and 
1001 cm−1. t-test statistic and p-value (p < .05) indicated for statistically significant differences 
between the mean intensity for the COVID-19 group relative to the control group using all spectra.
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component explained 14.6% of the data variation. Using our feature selection 
and engineering pipeline to process Raman data, we were able to achieve more 
clearly defined regions between classes in two principal component dimen-
sions as shown in Figure 3b. The processed data showed that 77.8% of all 
spectral variation were accounted for within the first two principal compo-
nents. The first principal component explained 67.0% of the data variation and 
the second principal component explained 10.8% of the data variation. 
Comparisons of machine learning model performance using PCA reduction 
and baseline Raman spectral data yielded consistent improvements of inde-
pendent model performance using the processed data by 5 土 2.3% 10-fold 
cross-validated accuracy.

The accuracy, precision, recall, F1-score, area under ROC curve, MCC, CK, 
and time to train and test baseline models have been summarized in Figure 4. 
Trained model files are provided in Supplementary Information. We have 
grouped each performance metric as a standalone stripplot with the mean 
score indicated for ease of model comparison. Figure 4 shows the scores for 
each of the 10-folds of the cross-validated train-test procedure grouped by 
machine learning model. From Figure 4, we see that the cross-validation 
procedure was successful in introducing variance in the train-test procedure. 
Base models were likely not overtrained when comparing the consistent 
predictive performance on training and testing sets. The consistent perfor-
mance of each baseline model across each performance metric can be indica-
tive of the quality of the models and the generalizability under different testing 
conditions and data. Nonparametric permutation tests were resampled 1000- 
fold for each of the nine baseline models and the ensemble model (Golland 
and Fischl 2003). Each test yielded a statistically significant classification 

Figure 3. PCA projection of Raman spectra in two dimensions of COVID-19-infected and healthy 
control patient serum samples. a) PCA visualization of pre-processed Raman spectra, colored 
according to class. b) PCA visualization of processed Raman spectra using workflow described in 
methods, colored according to label.
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accuracy (p < .05), given the null hypothesis of no difference between a random 
classifier and tested classifier with an expected mean binary classification 
accuracy of 50%.

The ranked normalization approach for aggregate scoring of machine 
learning model performance across multiple metrics has previously been 
proposed and was used to rank model performance in Table 1 (Korotcov 
et al. 2017). The implementation of the ranked normalization approach uses 
the mean across six performance metrics (MCC, CK, accuracy, precision, 
recall, and F1-score) to provide an aggregate score to rank the overall 
performance of each model. The area under the ROC curve was excluded 
from the ranked normalization approach to ranking models since the stacked 
subsemble model does not return probabilistic estimates of assigning 
a sample to a given class needed to produce the area under the ROC curve 
metric.

When models are ranked based on average performance, the Meta-stacked 
Ensemble Classifier ranked above all nine other baseline machine learning 
models across the MCC, Accuracy, and Recall performance metrics. The 
subsemble classifier and the Multi-layer Perceptron classifier produced 
98.0% and 96.0% 10-fold cross-validated accuracy. The ensemble classifier 
produces a mean measurement of 0.930 or greater and a maximal measure-
ment of 1.000 in at least one-fold of the train-test procedure for all metrics 
except for time. Both the ensemble classifier and Perceptron classifier also 
consistently achieve above 90% accuracy and similar performance on other 
metrics except for time regardless of which dataset partition was trained and 
tested on as part of the 10-fold cross-validation scheme. Time for the 10-fold 
train-test procedure of the ensemble classifier and the standalone perceptron 
classifier was 80 seconds and 4 seconds, respectively.

Figure 4. Stripplot for machine learning algorithm performance to classify the test fold when 
trained on the remaining folds using the 10-fold cross-validation scheme across eight metrics.
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Among the nine baseline models, the Logistic Regression classifier outper-
forms the other models, including the Multi-layer Perceptron, based on mean 
CK (0.93569), accuracy (0.972), recall (0.976282), F1-score (0.972806), and the 
area under the ROC curve (0.991667) metrics.

For MCC, the best performing model was the Support Vector classifier 
(0.9468843). For precision (positive predictive value), the best performing 
model was the ExtraTrees classifier (1.000). The Support Vector Classifier 
and the ExtraTrees classifier both consistently perform among the top three 
baseline models across five out of seven unique performance metrics. 
Computationally inexpensive algorithms including Logistic Regression, 
K-Nearest Neighbors, and to a lesser extent Support Vector Machines and 
Decision Trees were each able to conduct single train-test procedures on the 
dataset in under 0.2 seconds. Comparatively, iterative algorithms such as 
Gradient Boosting, hierarchical tree-based algorithms such as Random 
Forest and ExtraTrees, and deep learning architectures such as the Multi- 
layer Perceptron required more time to complete the 10-fold train-test proce-
dure. The Multi-layer Perceptron took the longest time to train and test at over 
0.36 seconds, the Gradient Boosting took over 0.20 seconds, and the Extra 
Trees and Random Forest classifiers took at least 0.13 seconds.

Threshold-free measures such as the ROC and Precision-Recall (PR) curve 
can give an overview of the performance range across various thresholds 
(Handelman et al. 2019). With successive thresholds, we are able to produce 
dynamic scores for support machine learning classifiers. We selected three 
common machine learning models (Logistic Regression, Linear Support 
Vector Classifier, and ExtraTrees Classifier) and the Multi-layer Perceptron 
model to examine the ROC curve, PR curve, and binary classification decision 
regions in two principal component feature space. In Figure 5a, we observe 
that the Logistic Regression, Linear Support Vector Classifier, and ExtraTrees 
Classifier with tuned hyperparameters are able to independently achieve 0.994, 
0.990, and 0.989 mean score for the area under the ROC curve metric. 
A corollary to the ROC curve is the PR curve, which has previously been 
suggested to give a more informative picture of an algorithm’s performance 
and whose performance is not strictly related to the same model’s performance 
using the ROC metric (Davis and Goadrich 2006). Figure 5b shows that each 
baseline model achieves above 0.98 mean score for the area under the PR curve 
metric. Comparatively, the Multi-layer Perceptron achieves worse perfor-
mance with 0.95 and 0.91 mean score for area under the ROC curve and PR 
curve, respectively. This worse performance is likely due to the need for 
traditional deep learning algorithms to extract complex features from larger 
datasets (Najafabadi et al. 2015) and the few samples of the training dataset in 
this test. The first two principal components of the processed raman spectra 
are visualized in Figure 5c and decision borders are plotted as contours of 
predicted class probabilities. We see that the first two principal components of 
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the processed Raman spectra data produce two distinct regions of feature 
space for each of the two classes. Generally, each of the four selected models 
were able to distinguish decision regions comprising reasonable class separa-
tions and did not overfit to outliers during the cross-validation testing scheme.

To showcase the performance of the stacked subsemble model on each fold, 
we show the performance of the subsemble model trained and tested using the 
10-fold cross-validation scheme across six metrics as shown in Table 2. The 
stacked subsemble model consistently achieves at least 0.8 or higher in any 
single fold across each of the six performance metrics. Moreover, the stacked 
subsemble model consistently produces a score of at least 0.9 or higher for the 
F1-Score, accuracy, precision, and CK metrics. Conversely, increased variation 
across different folds used to train the stacked subsemble model for the cross- 
validation procedure were observed from the MCC and recall metrics. From 
the results shown in Table 2, the consistent performance throughout each fold 
of the cross-validation procedure and across multiple unique metrics can serve 
as a good example of a model that is well balanced.

Figure 5. a) ROC curve for each fold of the 10-fold cross-validation for the logistic regression, 
support vector machine, extra trees (extra random forest), and Multi-layer Perceptron machine 
learning algorithms. b) PR curve for each fold of the 10-fold cross-validation for the logistic 
regression, support vector machine, extra trees (random forest), and Multi-layer Perceptron 
machine learning algorithms. c) Decision boundary for the logistic regression, support vector 
machine, extra trees (random forest), and Multi-layer Perceptron machine learning algorithms in 
two principal component feature space.
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Discussion

To date, Raman spectroscopy remains an exciting field of research with 
numerous applications due to its complex, feature-rich data that can be 
processed into machine-readable feature vectors and used to train predictive 
algorithms. However, the preprocessing steps to transform Raman spectra into 
machine-readable feature vectors and comparing machine learning, deep 
learning, and ensemble algorithms that are more capable of extracting these 
features as valuable trained data to produce predictions on novel data remain 
a developing area of research. This study aimed to fill the gap in literature by 
implementing an end-to-end workflow for Raman spectra feature processing, 
benchmarking several predictive algorithms on the processed dataset, and 
testing the predictive power of ensemble machine learning methods.

It is worth noting that the appropriate sequence of baseline correction and 
preprocessing techniques of Raman spectra can cumulatively improve perfor-
mance by 20–40% (Liu et al. 2017). From our iterative tests that evaluated the 
use of feature selection, wiener filtering, feature scaling, and PCA reduction at 
each stage of the preprocessing pipeline compared to baseline data, we were 
able to cumulatively achieve up to 10% increased accuracy and comparable 
improvements in precision and recall using the 10-fold cross-validation 
approach. This result highlights that preprocessing of spectra data is needed 
to efficiently handle the interference of baseline noise and explicitly retain 
discriminatory information as intended (Storey and Helmy 2019; Tulsyan 
et al. 2019). The 3–5% increase in mean accuracy of the ensemble classifier 
after the use of wiener filtering and feature selection suggests that there are 
redundant and highly correlated features in the training dataset. Non-essential 
features can be removed by the ExtraTrees classifier approach to ranking 
feature importance scores. Likewise, wiener filtering can filter out noise from 
corrupted signals to provide a smoothed-out estimate of the underlying signal 
by correcting for outliers. Standard normal variate scaling and PCA reduction 
further enhances model generalizability by preventing model overfitting and 
improves the ensemble classifier by up to 5% accuracy. We did not notice 

Table 2. Performance of the stacked subsemble model across six metrics on each of the 10-folds as 
part of 10-fold cross-validation scheme.

MCC CK Accuracy Precision Recall F-1 Score

Fold 1 1 1 1 1 1 1
Fold 2 1 1 0.96 1 1 1
Fold 3 1 1 1 1 1 1
Fold 4 0.849837 0.83871 0.96 1 0.833333 0.909091
Fold 5 1 1 0.96 1 1 0.96
Fold 6 0.9226 0.919614 0.96 0.928571 1 0.962963
Fold 7 1 1 1 1 1 0.96
Fold 8 0.9226 0.919614 1 0.928571 1 0.962963
Fold 9 1 1 1 1 1 1
Fold 10 0.923077 0.920128 0.96 1 0.923077 1
Mean 0.961811 0.959807 0.98 0.985714 0.984615 0.962411
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obvious effects of class imbalance due to the reasonably balanced class dis-
tribution in our processed dataset, but further studies are needed to bench-
mark the effect of class imbalance often found in real datasets.

From our results, we observed that the stacked ensemble classifier and 
Multi-layer Perceptron classifier consistently ranked first and second across 
the seven tested metrics respectively, with the exception of time complexity 
due to the resource-intensive nature of deep learning algorithms. The 
K-Nearest Neighbors model consistently ranked higher than even more com-
plex models such as the tree-based Decision Tree and the ensemble Adaboost 
classifier when evaluating the accuracy, F1-score, area under the ROC curve, 
MC, and CK metrics. Previous literature has suggested that despite the sim-
plicity of the K-nearest neighbors, this machine learning algorithm remains 
a frontrunner among other models and is highly scalable in real applications 
(Deng et al. 2016). In addition, more complex models are prone to overfit and 
may fail to generalize to novel data (Ying 2019). These superior performance 
results of the stacked ensemble classifiers and deep neural networks suggest 
that these algorithms should be further validated under different experimental 
scenarios of classification using Raman spectra to test for algorithm general-
izability on larger, noisier datasets.

Also, the use of several performance metrics to evaluate predictive algo-
rithms sheds new light on model performance under different evaluation 
scenarios. When evaluating a model’s performance in predicting the positive 
class, using the area under the PR curve metric is more sensitive to improve-
ments in the positive class (Saito, Rehmsmeier, and Brock 2015). However, if 
the aim is to evaluate predictive performance of both the positive and negative 
class and the dataset class distribution is reasonably balanced, then the area 
under the ROC curve is the more suitable metric (Bradley 1997). 
Comparatively, the MCC metric is more informative than accuracy and the 
F1-score in describing binary classification performance since it accounts for 
the balance ratios between true positives, true negatives, false positives, and 
false negatives (Chicco and Jurman 2020). Other metrics such as CK and the 
F1-score require a priori determination of appropriate baseline thresholds and 
should be constructed based on their relevance in each experimental scenario 
(Gastegger, Behler, and Marquetand 2017). For example, a random classifier is 
defined by a CK baseline agreement of 0 in this study and positive CK scores 
show that the tested classifier performs better than a random classifier 
(Gastegger, Behler, and Marquetand 2017). The CK metric was shown to 
more sensitively distinguish performance between machine learning models 
in this study compared to routinely used accuracy and area under the ROC 
curve metrics. This means that the optimization of machine learning models 
using stand-alone or a narrow range of metrics found in most published 
studies in this field can be misleading. Our approach for comparative 
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benchmarking across a diverse range of models and metrics is one step toward 
a more well-rounded approach to compare model performance and produce 
meaningful statistics at a higher level of sensitivity.

There are a few limitations in the current study that we hope to address. 
First, the study has a potential limitation of a relatively small number of unique 
samples for each of the two classes in the dataset. Larger datasets are usually 
needed to improve the robustness of prediction algorithms, especially for data- 
intensive deep learning models for classification of spectral data (Chen et al. 
2014). Second, the binary classification setup of the COVID-19 vs. healthy 
classification task does not address the continuous spectrum of how COVID- 
19 infection can manifest in the raman spectra of serum samples across 
successive timepoints. In the future, we plan to modify our approach by 
using diverse datasets with labels representative of different stages of infection, 
such as pre-symptomatic and post-symptomatic stages. Third, we hope to use 
these temporal features to train a recurrent neural network model due to their 
ability to extract features of temporal dynamic behavior and conduct com-
parative benchmarks. At the same time, further optimization of the original 
model architecture and various feature selection and engineering methods will 
be tested to improve classification performance further.

Conclusion

In this paper, we propose using a stacked subsemble classifier comprised of 
a deep learning predictive meta algorithm trained on class probabilities from 
eight base machine learning models as a classification tool using serum Raman 
spectra data. We have implemented a workflow for processing Raman spectra 
data for input into machine learning algorithms, a novel meta-stacked sub-
semble model for highly accurate supervised classification, and comparative 
benchmarks between nine baseline machine learning models and the novel 
subsemble model across eight performance metrics. To test for robustness of 
the ensemble model and comparatively benchmark the nine base machine 
learning models, we implemented a 10-fold cross-validation scheme for each 
of the eight performance metrics on the same dataset. We believe that the pre- 
processing workflow and evaluation of eight performance metrics across 
several machine learning models can be applicable to other spectroscopy 
methods that incorporate machine learning into their predictive algorithms.

Using a combination of our data pre-processing pipeline, as well as fine- 
tuned base model and meta model hyperparameters of the stacked ensemble 
classifier, we achieved a maximal accuracy of 100% in one fold and a mean 
accuracy of 98.0% across all 10 folds in the cross-validation procedure and 
higher average precision (98.6%) and recall (98.5%) metrics compared to 
baseline machine learning models and stand-alone deep learning algorithms. 
Overall, we believe that ensemble machine learning algorithms can be further 
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tuned and scaled as an auxiliary tool for objective clinical diagnosis of COVID- 
19 cases and support clinical decision-making.

Highlights

● Subsemble achieves 98.4% accuracy on Raman spectra of COVID-19 serum samples.
● Subsemble outperformed nine other machine learning models in several metrics.
● Forest-based feature selection and wiener filtering improved model performance.
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