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Abnormal driving behavior detection based on an 
improved ant colony algorithm
Xiaodi Huanga, Po Yuna, Shuhui Wub, and Zhongfeng Hua

aSchool of Economics and Management, Hefei University, Hefei, China; bSchool of Management, Hefei 
University of Technology, Hefei, China

ABSTRACT
As one of the most serious hazards in the world, more than 80% 
of traffic accidents are caused by driver misconduct. The detec
tion of abnormal behavior of drivers is important to improve 
safety in public transportation. The anomaly measurement is 
not only determined by objective rules such as laws, but also 
distinguished due to the biological characteristics. The same 
driving behavior may present completely opposite judgment 
results for different categories of drivers. In this paper, we 
propose a novel detection method that measures the prefer
ence path length of drivers for various driving operations via 
pheromones, and identifies abnormal driving behavior by cal
culating the cumulative conversion probability of operation 
switching. An improved ant colony algorithm based on fixed 
point simplicial theory is proposed to improve the convergence 
efficiency by optimizing the initial population state. 
Experimental results show that the proposed method can effec
tively detect abnormal driving behavior and significantly reduce 
false alarms.
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Introduction

Drivers still play an important role in driving safety despite the presence of 
driverless vehicles, driving behavior detection during driving is crucial (Chen 
and Chen 2020). With the innovation of onboard sensors and the application 
of 5 G communication networks in the transportation industry, multi-source 
data reflecting the status of vehicles and other vehicles in complex driving 
environments can be collected and transmitted. More information sharing 
brings more opportunities and challenges to the study of driving behavior. 
Existing studies mainly focus on trajectory data, video data, physiological 
information data, and vehicle motion state data.

Studies based on trajectory data recover driving track over a period of time 
by using motion data, e.g., longitude, latitude, and time collected by satellite 
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positioning devices (Chen and Chen 2021). From the macro level, the road 
traffic state is predicted and evaluated by the changes in the traffic flow trends 
within the region, such as abnormal congestion, vehicle demand change, and 
abnormal track detection. Research based on video data can be divided into 
driver state detection and driving environment detection. Cameras that are 
installed in the main driving position are used to collect images of the driver’s 
face, hands and body movements (Yao et al. 2022), whereas, the camera and 
radar outside the vehicle are used to collect images of objects affecting vehicle 
running in the real world (Kumar, Kant, and Pal 2022), such as lane lines, side 
vehicles, and weather. According to a large amount of sample data, image 
features are extracted by deep learning or machine learning techniques to 
build a detection model to recognize the driver state and the vehicle driving 
environment (Hu, Zhang, and Maybank 2020). Trajectory data and image data 
mainly reflect the driving state of the vehicle, however, as a biological feature, 
driving behavior is closely related to the psychological and physiological states 
(Meneghetti et al. 2018). The video data which collect the face and body 
movements are only the external display after the spiritual activity of the 
driver, and it can hardly be used to identify the physiological abnormal 
symptoms beforehand. Currently, electroencephalogram (EEG) is the main 
method used in a study based on physiological information, which not only 
accurately reflects the driver’s spiritual activity, but also has obvious differ
ences in various traffic environments (Peng et al. 2022). Compared with other 
kinds of driving data, EEG shows two advantages in identifying driving 
behaviors: 1) EEG data have higher temporal resolution and allowing real- 
time classification based on it (Yang et al. 2020), 2) EEG data can provide 
additional information (physiological and emotional) beyond the vehicle of 
motion (Li et al. 2020). However, the high price of such devices and intrusive 
data collection approaches have hindered their wider application. The research 
based on vehicle motion state mainly uses time series data as the carrier to 
monitor kinematics and dynamics characteristics, including speed, accelera
tion, throttle and brake (Abusitta et al. 2023). Such type of research is wildly 
popular due to the advantages of low difficulty in obtaining data and low 
storage requirements, as well as better accuracy and quality of data than other 
types (Ryan, Murphy, and Mullins 2021).

Motion data reflecting the state of the vehicle contains multiple dimensions, 
such as movement data in the horizontal/vertical direction, running data for 
each component, as well as the interaction information between the vehicle 
and other vehicles or roads (Ryan, Murphy, and Mullins 2020). Thus, the 
detection of abnormal driving behavior requires the selection of data dimen
sions that can reflect driving habits and the determination of anomaly mea
sures by classifying drivers.

Singh et al. (Singh and Kathuria 2021) used an embedded system based on 
the concept of the Internet of Things to extract vehicle operating parameters 
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from on-board Diagnostics (OBD) to established an objective evaluation 
model of driving style, based on which the styles are categorized as: safety, 
economy, and comfort. Based on the theory of rigid body kinematics (Liu, 
Wang, and Qiu 2020), developed a specific physical model to reveal the 
variation rule of vehicle motion data which are collected by nine-axis motion 
sensors. Due to feature extraction, a classifier is built to recognize driving 
behaviors such as braking, acceleration, lane change, and swerve (Vlakveld, 
Doumen, and van der Kint 2021). combined hidden Markov model with long 
short-term memory network model based on the attention mechanism. The 
combined model is able to identify and predict aggressive driving behavior 
with an average accuracy of 80% (Xu et al. 2022). developed a method to 
identify the driving behaviors like going straight, left turn, right turn, and 
interrupt through acceleration and angular velocity data collected by smart
phones sensors. To improve its robustness, a technique combining recurrent 
and convolutional neural networks with attention units was designed to 
remove the gravity effect on the sensors. Based on motion state estimation 
and passenger subjective feeling score (Xiang et al. 2021), proposed 
a prediction model composed of cloud model and Elman neural network, 
which is more intuitive in sensing potential dangerous driving behavior.

In such studies, as a biological property, the driving behavior of any two 
drivers cannot be exactly the same, and even drivers of the same type may have 
significantly different operating patterns (Habibifar and Salmanzadeh 2022). 
The same pattern may even present opposite judgment results for different 
drivers, so it is impossible to construct an anomaly pattern detection criterion 
that is applicable to all drivers in advance.

In this paper, we proposed an abnormal driving behavior detection method to 
fit the boundaries of different driving patterns with pheromone concentration, 
and measure the conversion probability between driving patterns based on an 
improved ant colony algorithm. Under the condition of incomplete sample labels, 
according to the motion data, the method can adaptively determine data bounds 
for various driving patterns and judgment criteria for abnormal driving behavior.

The Contribution of the Proposed Method Includes

(1) Novel detection method: The proposed method introduces a novel 
approach to detecting abnormal driving behavior by measuring the 
preference path length of drivers for various driving operations via 
pheromones and calculating the cumulative conversion probability of 
operation switching.

(2) Improved convergence efficiency: The use of an improved ant colony 
algorithm based on fixed point simplicial theory optimizes the initial 
population state and improves convergence efficiency, reducing false 
alarms and increasing accuracy.

e2216060-1782 X. HUANG ET AL.



(3) Effective detection of abnormal behavior: The experimental results 
show that the proposed method effectively detects abnormal driving 
behavior, which can improve safety in public transportation and reduce 
traffic accidents caused by driver misconduct.

Overall, the proposed method offers a unique and effective approach to 
detecting abnormal driving behavior and improving safety in public transpor
tation. By utilizing pheromones and an improved ant colony algorithm, the 
method offers improved accuracy and efficiency, reducing false alarms and 
increasing detection rates.

The article is organized into several sections, each of which describes 
a different aspect of the proposed method for detecting abnormal driving 
behavior using pheromones and an improved ant colony algorithm. The 
main sections of the article are:

(1) Fixed point theory: This section describes the mathematical background 
of fixed point theory, which is used in the algorithm design.

(2) Anomaly detection framework: This section presents the overall frame
work for detecting abnormal driving behavior using pheromones and 
an improved ant colony algorithm. It describes the key components of 
the framework, including the feature extraction process and the deci
sion-making algorithm.

(3) Algorithm design: This section provides a detailed description of the 
algorithm used for detecting abnormal driving behavior. It includes 
a discussion of the fixed point simplicial theory and the ant colony 
optimization algorithm, as well as the specific steps used to calculate the 
preference path length and cumulative conversion probability of opera
tion switching.

(4) Experiment and analysis: This section presents the experimental results 
of testing the proposed method on a dataset of driving data. It includes 
a discussion of the evaluation metrics used, as well as a comparison with 
other existing methods for detecting abnormal driving behavior.

(5) Conclusion: This section summarizes the main contributions of the 
proposed method and discusses future directions for research in this area.

Fixed Point Theory

Related Definition

Definition 1 For a nonempty set X, f is its self-mapping, if there is a x*∈X 
which satisfying f(x*) =x*, x* will be considered as a precise fixed point of the 
mapping f.
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Definition 2 For a Euclidean space Rn, existing such a polyhedron: the first 
coordinate of its first vertex descends, the second coordinate of its second 
vertex descends, . . . , and the n-th coordinate of the n-th vertex descends, but 
all the coordinates of the n+1-th vertex remain unchanged. Such a polyhedron 
is a complete simplex, the vertexes can be regarded as fixed points.

Definition 3 For a Euclidean space Rn, its basis vectors consist of an unit 
matrix u with n orders: u=u1+ . . . +un=(1, . . . ,1). Suppose that K0

1 is an integral 
point set (a set of points whose coordinate components are all integers) of Rn. 
If point y0∈K0

1 , k1(y0,π) can be used to denote the n-dimensional simplex 
σ=<y0, y1, . . . , yn>. For yi=yi-1+uπ (i), i∈N, N=(1,2, . . . ,n), π=n! consist the 
substitution of N.

Simplicial Algorithm

As a method of connecting computational mathematics with topology, due to 
its strong local searching ability, simplicial algorithm (SA) can be used to 
narrow the searching space and reduce the iterative evolutionary algebra in the 
optimization problems (Ren et al. 2020). The process of SA is consisting of 
search space division, simplicial subdivision, and vertex labeling approach, as 
shown in Figure 1.

(1) Searching space division
For a Euclidean space Rn, line set xi=mhi (i = 1,2, . . .,n) is used to 

divide the searching space into uniform polyhedra, where m is the para
meter of precision control. According to the requirement of the optimiza
tion problem, based on the value of searching space, all dimensions of the 
optimization variable can divide into various step size from one- 
hundredth to one ten-thousandth. If the optimization problem requiring 
high precision.

(2) K1 simplicial subdivision
According to Definition 2 and 3, due to the various form of substitution π, it 

can find n! n-dimensional simplexes from the positive side of each integer 
point y0. All the simplexes will be treated as a K1 simplicial subdivision of Rn. 
The detailed of K1 simplicial subdivision can be found in(Huang, Han, & Hu).

(3) Labelling approach of simplex vertex

Define the target 
function and its 

constraints

Divide the 
searching space 

into step size

 Carry out  K1
simplicial 

subdividion 

Label the 
vertexes of each 

simplex

 Search all the  
complete 
simplexes

Output the 
approximated 

fixed set

Figure 1. The process of simplicial algorithm.
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After K1 simplicial subdivision, the fixed points can be identified by search
ing complete simplexes based on labeling rules. There are two approaches: 
integer labeling and vector labeling.

Vector labeling method. For a self-mapping f, the function can be built as 
l(x)=f(x)-x, then the n+1 orders matrix Lσ according to Equation 1 is the 
labeling matrix of an n-dimensional simplex σ=<y0, y1, . . . ,yn >. For the 
liner equation Lσw=v, v=(1,2, . . . ,0)T, w ≥0, if the solution is existed, the 

simplex can be treated as a complete simplex, and x*=
Pn

i¼1
wiyi is a fixed point. 

Lσ ¼

1 . . . 1
. . . . . .

l y0ð Þ . . . l ynð Þ

2

4

3

5 (1) 

Integer label method. For a self-mapping f, the function can be built as F(X)= 
f(x)-x, each vertex of the simplex is labeled according to Equation 2. The 
simplex will be treated as a complete simplex if its labeling sequence is Lσ= 
(0,1,2 . . . n), each vertex of the simplex can be treated as a fixed point. 

0; Fi � 0; i ¼ 1; 2; . . . ; n
imax; Fi > 0Fj � 0;"j< i

�

(2) 

The integer labeling method is advantage in a single loop, while the vector 
labeling method is advantage in the number of iterations. For complex func
tions, the number of iterations must be as few as possible, vector labeling 
method is better than integer labeling method. If the complexity of the 
function is low and easy to calculation, the integer labeling method can save 
more computation.

Anomaly Detection Framework

Data Collection

In the process of vehicle running, driving operations will trigger the compen
sation of the Vehicle Power Feedback System (VPF) based on preset rules 
(Sethuraman et al. 2023), such as the Electronic Stability Program (ESP), Anti- 
lock Braking System (ABS), advanced driver assistance system (ADAS), etc. 
The pattern of driving behavior is consisted of a series of driving operations. 
As shown in Figure 2, the sequential data reflecting the behavior character
istics of different drivers are fit by taking yaw velocity of the vehicle after 
compensation as the output, taking the wheel steering and expected speed 
(realized through deceleration or acceleration) collected by the sensor is taken 
as the input.

For each driving operation, the VPF system will predict and compensate 
according to the pre-set rule base. However, due to the different behavior 

APPLIED ARTIFICIAL INTELLIGENCE e2216060-1785



characteristic of each driver, the compensation may deviate from the actual 
expectations of the driver. Drivers who fail to achieve the expected objective 
continue to adjust driving operations, and the VPF system compensates based 
on the driver’s re-operation until the two expectations reach a consensus. As 
shown in Figure 3, when the vehicle is oversteer, the feedback system modifies 
the yaw velocity by adjusting the velocity of the outer wheel to keep the actual 
trajectory consistent with the expectation. Otherwise, it will modify the yaw 
rate by adjusting the internal wheel speed when the vehicle is understeer.

According to the receipts collected by the vehicle sensors, a discrete data 
series reflecting the characteristics of driving behavior of different drivers can 
be fitted by polynomial equation: Sv=(<B1, T1>,<B2, T2>, . . . ,<Bk, Tk> . . .). 
Time attribute T is used to record the time point at which data is collected by 

Driving operation

Actual driving path

Compensation of VPF 

Expected driving path

If expectations
 match reality?

Change of vehicle status

Keep current driving operation

Yes

No

Steering wheel 
angle sensor

Acceleration 
sensor

Yaw velocity 
sensor

Figure 2. The fitting process of driving behavior.

Figure 3. Trajectory correction based on yaw velocity.
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vehicle sensor when the driver carries out driving operation. Behavior attri
bute B is which measured by Equation 3. 

Yaw ¼ f θ;wð Þ (3) 

f represents the function relation between the feedback system and driver 
operations. Parameter θ represents the steering wheel angle, Parameter 
w represents the expected speed, and Yaw is the vehicle yaw velocity compen
sated by the feedback system.

According to Equation 4, the yaw velocity can be calculated by the speed 
discrepancy between the inner and outer wheels. The speed sensors are usually 
installed on driving wheels. 

Yaw ¼ wr1 � wr2j j=l � cosα (4) 

Parameter wr1 represents the outer wheel speed, wr2 is the inner wheel speed, 
l is the wheel pitch, and α is the wheel Angle.

Assumption

Assumption 1 The behavior attributes of data in the sequence Sv are all legal 
operations.

The proposed method aims to identify abnormal driving patterns that may be 
caused by fatigue, vehicle failure, and other causes that are obvious different 
from the normal driving states, but excludes subjective conscious abnormal 
operations such as speeding, illegal lane changes, etc.

Assumption 2 The data generated by a single driving operation in the 
sequence Sv is normal by itself.

Any type of driver is likely to perform some of the same driving operations, 
such as braking, rapid acceleration. Thus, the anomaly is not measured on the 
basis of a single operation, but refers to an abnormal driving pattern consisted 
of a series of operations.

Assumption 3 All operations employed by drivers are regarded as a finite 
discrete list, and each driving pattern consists of a finite number of operations.

In the experiment, the driving operations were classified refer to the variation 
amplitude of steering wheel and expected velocity.

APPLIED ARTIFICIAL INTELLIGENCE e2216060-1787



Assumption 4 The data that constitutes the abnormal driving pattern is 
a tiny fraction of the sequence Sv.

Anomaly Measurement

Based on the above assumptions, any single driving operation is considered 
normal in the sequence Sv, but there are significant differences in the combi
nation of operations and conversion rules employed by different types of 
drivers. For example, conservative drivers typically do not take a rapid accel
eration operation after steering, while aggressive drivers do not engage in 
braking maneuvers when slowing down. Therefore, in this paper, we propose 
an anomaly detection method based on the measurement of the cumulative 
conversion probability between different driving operations.

Anomaly is measured as follows: within a certain interval, if the cumulative 
conversion probability of continuously varying driving operations falls below 
the threshold value, these operations will be identified as abnormal driving 
patterns. Otherwise, they will be judged to be normal driving behavior.

Detection Model

In order to improve the efficiency in detecting abnormal driving patterns, as 
shown in Figure 4, the model is divided into an offline fitting stage and an 
online detection stage.

In the offline stage: First, the driving pattern is segmented based on the 
sample dataset. In the sequence, the time point when the vehicle state 
changes (yaw velocity changes) due to the new driving operation will be 
set as the starting point, and the time point when the state reaches 
stability after compensation by the VPF system (yaw velocity does not 
change) will be set as the end point, then the subsequence between 
starting points and end points is regarded as an initial driving pattern. 

Offline-stage

Driving 
operation

Algorithm 
and model

Expert 
knowledge

Sample 
data

VPF system

Conversion 
probability

Driving pattern

Online-stage

Testing data
(Real time data)

Calculate cumulative 
conversion probability

Detect anomaly 
driving pattern

Figure 4. The process of detection model.
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Second, driver behavior characteristics are measured based on the pre
ferred path. Each driving pattern can be viewed as a path for the driver to 
achieve the driving purpose, and different types of driving operations are 
treated as nodes on the path. The conversion probabilities between dif
ferent driving operations are calculated using the pheromone theory of 
ant colony algorithm. The higher the concentration of pheromone, the 
shorter the preferred path, which means the greater the conversion 
probability between the operations.

In the online stage: Firstly, calculating the cumulative conversion probabil
ity for the test dataset. Then, the normal and abnormal driving patterns can be 
distinguished depending on the threshold of the probability.

Algorithm Design

The algorithm involved in the proposed method consists mainly of the follow
ing three parts: the calculation of conversion probability between driving 
operations, the calculation of cumulative conversion probability, and an 
improved ant colony algorithm based on fixed point theory.

Conversion Probability Calculation

Each driving pattern corresponds to a preferred path that reflects the beha
vioral characteristics of different drivers. Due to the virtual existence of 
preferred path, this paper adopts the pheromone concentration theory in ant 
colony algorithm (Yi et al. 2020) to measure preferred path distance, which is 
detailed as follows:

(1) Each driving operation in the process of vehicle running is regarded as 
a “node”, and the number is denoted as N.

(2) There is no actual physical path between nodes, and the distance of 
physical paths is regarded as zero.

(3) A series of driving operations taken by the driver to realize the driving 
purpose can be regarded as a movement track of the ant, and the 
pheromone concentration between the two nodes in the list is τij, i, 
j∈N.

(4) Each ant saves a list tabu() to record the sequence of nodes visited so far, 
that is, to record all the driving operations that may occur after the 
current operation.

5) Update the pheromone concentration in the tabu() based on real-time 
driving operation conversion. The distance of preferred path between the 
current driving operation and the possible next driving operation is 
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measured in terms of the pheromone concentration between the two 
nodes.

The conversion probability between driving operations is determined 
by two factors: one is the distance of the preferred path between two 
nodes, the other is the average residence time at the current node (the 
duration of not taking a new operation). The calculation is carried out as 
follows.

(1) In the time interval T, if m ants were recorded crawling through, the 
concentration of volatilization of pheromone between any two nodes was 
calculated according to Equation 5. Parameter ρ is the volatilization coefficient 
of pheromone, 0<ρ < 1. 

τij t þ Tð Þ ¼ ρτij tð Þ þ
Xm

k¼1
Δτk

ij (5) 

(2) According to Equation 6, the preferred path between nodes is measured 
by the conversion probability. The higher the concentration of pheromone, 
the shorter the preferred path, which means that the conversion probability 
between the two driving operations is larger. 

pij tð Þ ¼
τij tð Þ

P
j2N τij tð Þ

(6) 

(3) Recording the residence time of the driver at each node: t=ηi,i∈N. Within 
a time interval T, if k ants crawl through node i, the average value of the residence 
time at that node is computed according to Equation 7. The maximum value 
max(ηi) and minimum value min(ηi) of the residence time are also recorded. 

ηi ¼
ηi σ1ð Þ þ � � � þ ηi σkð Þ

k
(7) 

(4) The attenuation factor ω of the average residence time is set at each 
node, 0<ω < 1. The estimated residence time at current node is calculated 
using Equation 8. 

ηi tð Þ ¼ ωηi� 1 þ ηi
� ��

2 (8) 

(5) The conversion probability from the current operation to the next one is 
calculated using Eq.9. Parameters α and β represent the calculated weight ratio 
of the distance of the preferred path and the average residence time, α+β = 1. 
When the estimated residence time exceeds the maximum or minimum range, 
a large weight is assigned to the residence time: α1>α2, β1<β2. 
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P ¼

α1 � pij tð Þ þ β1 � 1 � ηi� ηi tð Þj j
ηi tð Þ

� �

;min ηi
� �

< ηi < max ηi
� �

α2 � pij tð Þ þ β2 � 1 � ηi� max ηið Þ
max ηið Þ

� �

; ηi > max ηi
� �

α2 � pij tð Þ þ β2 � 1 � min ηið Þ� ηi

min ηið Þ

� �

; ηi < min ηi
� �

8
>>>>>><

>>>>>>:

(9) 

(6) After each ant movement, the following information is updated: list tabu 
(), pheromone concentration and residence time.

Cumulative Conversion Probability

The cumulative conversion probability is calculated using Equation 10, para
meter γ represents the decreasing weight. If the value of cumulative conversion 
probability is lower than the threshold, these driving operations will be 
identified as abnormal driving patterns. 

φ ¼ γ1P N1;2
� �

þ . . .þ γiP Ni;j
� �

(10) 

Improved Ant Colony Algorithm

Aiming at the loss of computational efficiency caused by the probabilistic 
movement of individual ants in traditional algorithms, an improved ant 
colony algorithm based on the fixed point theory (Fixed point- ant colony 
optimization algorithm, FP-ACO) was proposed to improve the iterative 
efficiency by optimizing the quality of initial population.

The FP-ACO algorithm is divided into three steps. First, the extreme value 
solution problem for the objective function of the Ant Colony algorithm 
(ACO) is transformed into the fixed point equation solution problem. 
Second, the set of fixed points obtained by the simplicial algorithm (SA) is 
used as the initial population for the ACO algorithm. Finally, the max-min 
strategy is used to update the pheromone to enhance the global search cap
ability, since the fixed points are almost distributed at the edges of the local 
extrema.

The Construction of Fixed Point Equation
The extreme value solution problem for the objective function of the ACO 
algorithm can be described in Equation 11. Parameter X is the variable of 
n dimension, f(X) is the objective function, gi(X) represents constraint 
functions. 
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miny ¼ f Xð Þ
X 2 Xjgi Xð Þ � 0; i ¼ 1; . . . ;mf g

�

(11) 

If the objective function is differentiable everywhere in the domain, the 
optimal solution must occur at the position satisfying the derivative function 
f’(X) = 0. Otherwise, the point may be inflection points, but the optimal 
solution must be included. The search space of the ACO algorithm can be 
greatly reduced by taking these points as the initial population. The specific 
steps are as follows:

(1) The derivative function f ʹ(X) = 0 can be constructed as an equation of 
fixed point: F(X)=X- f ʹ(X). According to Definition 1, if the function 
F(X) have a fixed point, it must satisfy F(x*)=x*- f ʹ(x*)=x*, then f ʹ(x*) =  
0.

(2) According to Equation12, the multivariate function f(X)= f(x1, . . . , xn) 
can be converted into fixed point equations, and the extreme value can 
be found by solving the fixed point equations.

f1 x1; x2; � � � ; xnð Þ

f2 x1; x2; � � � ; xnð Þ

� � �

fn x1; x2; � � � ; xnð Þ

8
>><

>>:

!

F1 x1; x2; � � � ; xnð Þ ¼ x1 þ f1 x1; x2; � � � ; xnð Þ

F2 x1; x2; � � � ; xnð Þ ¼ x2 þ f2 x1; x2; � � � ; xnð Þ

� � �

Fn x1; x2; � � � ; xnð Þ ¼ xn þ fn x1; x2; � � � ; xnð Þ

8
>><

>>:

(12) 

Initial Population Based on Fixed Point
The fixed point equation can be solved by the simplicial algorithm, and the 
fixed points on the complete simplex are used as the initial population for the 
ACO algorithm. The specific steps are as follows:

(1) The searching space [-ximax: ximax] of fixed point equation is divided due 
to the predefined step size.

(2) K1 simplicial subdivision is performed on the divided searching space.
(3) The simplexes obtained by the K1 subdivision is labeled according to the 

vector labeling method or the integer labeling method. The complete 
simplexes can be found according to the judgment rule of each method.

(4) The initial population of the ACO algorithm is set as the sequence of 
complete simplex σ=(σ1, σ2, . . . , σj).

Max-Min Ant Strategy
The maximum and minimum ant strategy is used to avoid the “stagnation” 
phenomenon that all ants converge to the same path because the pheromone 
concentration on the path is much higher than that on others. Limit the upper 
and lower values of pheromone concentration values[τmin: τmax], and the 
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concentration on all branches are initialized to the maximum τmax. Only the 
best performing ant is allowed to update the pheromones along the path at 
each iteration of the algorithm. The ant updates pheromone concentration 
after each cycle according to Equation13, f(sbest) represents the global optimal 
solution with the best fitness. 

τi;j t þ 1ð Þ ¼ ρτi;j tð Þ þ Δτbesti;j 

Δτbesti;j ¼ 1�f sbest� � (13) 

Contrast Test

Testing Function
In this section, five functions are chosen to test the effectiveness of the FP- 
ACO algorithm, including two unimodal functions: Sphere, Rosenbrock, and 
three multimodal functions: Ackley, Griewanks, Rastrigin. The details of the 
functions are listed in Table 1.

To test the adaptability of the algorithm in the complex setting, the ortho
gonal matrix is generated by applying Salomon’s algorithm to the rotation of 
three multimodal functions according to Equation 14. X=[x1, x2, . . . , xn] is the 
independent variable of the non-rotating functions, Y is the independent 
variable after rotation, and the rotation function is denoted as f*(x). After 
rotation, the local extrema of the functions increase sharply. 

Y ¼ MX;M ¼
m11; � � � ;m1n

� � �

mn1; � � � ;mnm

2

4

3

5 (14) 

Testing Result and Analysis
The dimensionality of all test functions is set to n = 30. The FP-ACO and 
conventional ACO algorithms were independently run 50 times on the test 
functions. The termination condition of non-rotation function algorithm is 
2 × 105 function evaluation, and the termination condition of rotation func
tion algorithm is 4 × 105 function evaluation. As shown in Table 2, the mean 
and standard deviation of the 50 testing results is recorded, and all results are 
kept to two decimal places.

From the testing results, it is obvious that the FP-ACO algorithm achieves 
better average convergence rate and solution accuracy than the conventional 
ACO algorithm for both non-rotating and rotating detection functions.

In terms of convergence rate, the excellent state of the initial population 
allows the FP-ACO algorithm to find high-quality solutions with fast conver
gence rates by drastically reducing the searching space and the number of 
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redundant iteration steps. The FP-ACO algorithm shows significantly better 
running stability than the conventional ACO algorithm, and the standard 
deviation still retains an obvious advantage even when dealing with complex 
rotation functions. It is further demonstrated that the FP-ACO algorithm has 
better applicability and stability when dealing with complex problems.

In terms of solution accuracy, the fixed points are distributed almost at the 
edges of the extreme values of the function. Thus, the set of max-min strategies 
is correspondingly better suited for global search, the ability of the algorithm 
to jump out of the local optimal solution is enhanced, and the search process 
exhibits continuous optimization. In particular, for the multimodal functions 
of Ackley, Griewanks, and Rastrigin with a large number of local optima, the 
search procedure hardly gets stuck in the local optima.

Robust Analysis
The robustness of the algorithm is verified by analyzing whether the same 
function runs stably under different conditions (rotation and non-rotation). 
Multimodal functions Ackley, Griewanks, and Rastrigin were selected for 
experiments, and the rate of successful convergence (SR) and the mean value 
of the function evaluation times (FEs) required for successful convergence are 
recorded for the two algorithms in 50 independent experiments.

Successful convergence means that the optimal solution found by the 
algorithm reaches the threshold (or the optimal solution of the test function) 
within the maximum iterative number. The testing result is shown in Table 3.

In the non-rotating case, the SR of the FP-ACO algorithm is much 
higher than that of the conventional ACO algorithm for all three test 
functions. In the case of the rotation function, the SR of the conventional 
ACO algorithm is significantly reduced. However, in the same case, 

Table 2. The testing result of the two algorithm.

Function

FP-ACO Conventional ACO

mean standard deviation mean standard deviation

Sphere 2.73×10−14 4.88×10−15 5.83×10−5 8.33×10−5

Rosenbrock 16.77 8.66 47.33 22.58
Ackley 7.43×10−15 3.23×10−16 7.49×10−7 4.74×10−8

Griewanks 5.28×10−6 6.77×10−7 5.27×10−2 2.49×10−3

Rastrigin 4.66×10−3 2.82×10−4 23.66 14.69
Ackley* 4.72×10−13 1.64×10−15 6.73×10−9 3.51×10−10

Griewanks* 7.22×10−8 4.30×10−9 6.23×10−4 3.14×10−4

Rastrigin* 1.68×10−6 4.37×10−7 7.47×10−1 8.64×10−3

Table 3. The value of SR and the mean of FEs of 50 independent experiments.
Ackley Griewanks Rastrigin Ackley* Griewanks* Rastrigin*

SR FEs SR FEs SR FEs SR FEs SR FEs SR FEs

FP-ACO 92% 17643 84% 15732 87% 16463 91% 25462 82% 19654 87% 22780
ACO 68% 26880 54% 21346 48% 19722 46% 29661 26% 37349 31% 30411
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although the FP-ACO algorithm uses more function evaluations, the SR is 
basically stable, which can demonstrate the robustness of the proposed 
algorithm.

Experiment and Analysis

A testbed environment for evaluating the proposed method for detecting 
abnormal driving behavior using pheromones and an improved ant colony 
algorithm would ideally consist of the following technical components:

(1) Data collection system: A system for collecting driving data from 
various vehicles in a controlled and standardized manner. This system 
should include sensors for measuring vehicle speed, acceleration, brak
ing, steering angle, and other relevant parameters, as well as 
a mechanism for storing and managing the collected data.

(2) Feature extraction and preprocessing system: A system for extracting 
relevant features from the collected driving data and preprocessing 
them for further analysis. This system should include algorithms for 
segmenting the data into individual driving operations, calculating the 
preference path length of drivers for each operation via pheromones, 
and converting the data into a format suitable for analysis by the 
anomaly detection framework.

(3) Anomaly detection framework: A software framework for implement
ing the proposed method for detecting abnormal driving behavior. This 
framework should include algorithms for calculating the cumulative 
conversion probability of operation switching, as well as a decision- 
making algorithm for determining whether a given driving behavior is 
abnormal or not. The framework should also include mechanisms for 
training and testing the algorithm on different datasets, as well as for 
evaluating its performance using various metrics.

(4) Hardware and software infrastructure: A high-performance computing 
infrastructure capable of running the feature extraction, preprocessing, 
and anomaly detection algorithms in a timely and efficient manner. 
This infrastructure should include powerful computing resources such 
as multi-core processors, GPUs, and high-speed storage, as well as 
software tools for managing and monitoring the computing resources.

(5) Evaluation and visualization tools: Tools for evaluating the performance 
of the proposed method on different datasets using various metrics, as 
well as for visualizing the results in a meaningful and informative way. 
These tools should include mechanisms for generating ROC curves, 
confusion matrices, and other relevant metrics, as well as for visualizing 
the driving data and the detected anomalies.
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Overall, the testbed environment should provide a comprehensive and stan
dardized way for evaluating the proposed method for detecting abnormal 
driving behavior, and should include all the necessary components for collect
ing, processing, and analyzing driving data in a consistent and reproducible 
manner.

Experimental Data

Combined with expert knowledge, the driving operation of the experimental 
dataset is divided into 20 categories. First, wheel steering is divided into left 
and right turns, and the turns are divided into five types of operation based on 
the steering angle. Second, acceleration and deceleration are classified into five 
types of operations based on the expected driving speed. Finally, for yaw 
velocity, when Yaw < 5, the car can be regarded as the stability, when Yaw >  
30, the car will roll over, which belongs to improper operation. The yaw 
velocity is divided into 5 levels according to the range of Yaw∈[5:30]. For 
the convenience of subsequent expressions, the information of the various 
operations is shown in Table 4.

The dataset provided by AXA1 platform contains 547,200 driving trajectory 
data of 2736 anonymized drivers. As shown in Figure 5, steering wheel angle 
(SWA) and expected driving speed (EDS) were taken as input and yaw velocity 
as output to calibrate these two driving behaviors. The color change from blue 
to red indicates an increase in driver aggression.

Based on assumption 4, which suggests that anomalies are only a very small 
fraction of the entire dataset, we decided to include a relatively small number 
of aggressive driver data points in the testing dataset, as we anticipate that 
anomalies will be rare.

After screening, there were 56,300 driving data representing conservative 
drivers and 87,200 driving data representing aggressive drivers. 20, 000 data 
representing conservative drivers were randomly selected as the sample data
set. According to Assumption 4, the anomaly is only a very small fraction of 
the entire dataset. Therefore, 2,600 randomly selected data representing 
aggressive drivers were split into eight sequences and mixed with the remain
ing 36,300 conservative driver data to form the testing dataset.

Data augmentation is used in machine learning to increase dataset size and 
diversity. The technique involves creating new examples from existing data to 

Table 4. The specific information of each kind of driving operation.
Driving operation Category and range

Left steering angle (°) θl1 : 0–15 θl2 :15–30 θl3 :45–60 θl4 :60–75 θl5 :75–90
Right steering angle (°) θr1 :0–15 θr2 :15–30 θr3 :45–60 θr4 :60–75 θr5 :75–90
Acceleration (Km/h) wu1 :0–20 wu2 :20–40 wu3 :40–60 wu4 :60–80 wu5 :80–100
Deceleration (Km/h) wd1 :0–20 wd2 :20–40 wd3 :40–60 wd4 :60–80 wd5 :80–100
Yaw(rad/s) Yaw1:5–10 Yaw2:10–15 Yaw3:15–20 Yaw4:20–25 Yaw5:25–30
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improve the model’s generalization ability by exposing it to more diverse and 
representative examples. There are various data augmentation techniques 
depending on the data type and problem being addressed. In our proposed 
method for detecting abnormal driving behavior using pheromones and an 
improved ant colony algorithm, we utilized data augmentation techniques to 
increase dataset diversity and improve the generalization ability of our 
method. We generated additional driving data points by applying slight 
variations to existing driving data points, such as adjusting the vehicle’s 
speed, acceleration, or direction. This helped to create a more diverse set of 
examples for the method to learn from, which ultimately enhanced its perfor
mance on new and unseen datasets.

Overall, data augmentation is a powerful technique that can improve the 
generalization ability of machine learning models across various contexts by 
creating more diverse and representative datasets.

Normal Driving Behavior Fitting

For the sample dataset, driving behaviors are first classified according to 
Table 4, and then the FP-ACO algorithm is used to calculate the conversion 
probability between different kinds of driving operations according to 
Equation 3–7. The results are listed in Table 5, where all results are kept to 
two decimal places. The greater the conversion probability, the greater the 
probability of these two types of operations occur sequentially in the driving 
pattern of the conservative driver. Blank means that there is no preferred path 
between driving operations, which implies that the driver will not take both 
types of driving operations consecutively.

Figure 5. The details of the experiment dataset.
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Anomaly Detection

According to the conversion probability in Table 5, the average conversion 
probability of the sample dataset is approximately equal to 0.513, then the 
threshold is set as Φ = 0.5. In the testing dataset, sequences with cumulative 
conversion probability of driving operations below 0.5 will be identified as 
abnormal driving patterns. The experimental results are shown in Figure 6, 
where the proposed method is able to successfully identify eight randomly 
inserted data sequences representing the driving patterns of aggressive drivers.

To further demonstrate the meliority of the proposed method, 
a comparison experiment was conducted with several current mainstream 
detection methods, such as STDTB-AD (Yu and Huang 2022), NaiveBayes 
(Odiathevar, Seah, and Frean 2022), KNN (Ma et al. 2023), and dynamic basic 
activity sequence matching (DAS) (Nguyen et al. 2020). The experiment is 
conducted on the same sample and testing dataset, the detection rate (DR) and 
the false alarm rate (FR) is shown in Figure 7. Due to the experimental results, 
the proposed method is consistent with the mainstream algorithms in terms of 
detection rate and has a small advantage, but it has a significant advantage in 
terms of false alarm rate.

Figure 6. The result of anomaly detection.
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Experiment Analysis

By comparing the detection results with the data labels of the testing dataset, 
although the proposed method successfully detected all abnormal patterns 
representing aggressive drivers, it failed to identify all the 2600 abnormal data 
that had been calibrated in advance. The detection rate (DR) is 87.56%, and the 
false alarm rate (FR) is 6.35%, the false alarm and unrecognized parts are 
mainly at the beginning and end of the sequence that characterizes the 
abnormal driving pattern.

As shown in Figure 8, in contrast to other algorithms, we do not identify 
individual behaviors below the threshold as anomalies. However, due to certain 
similarities between the driving patterns of conservative drivers and aggressive 
drivers, the start and end points of abnormal patterns are often inaccurate.

In the following experiment, we expand the size of sample dataset (by 
copying the data of conservative drivers) to improve the detection accuracy 
by fitting a more accurate conversion probability. The experimental results are 
shown in Figure 9, where the accuracy and false positive rate of the detection 
method show a trend of continuous optimization as the size of the sample 
dataset increases.

Figure 8. The result of following experiment.

Figure 7. The result of comparison experiment.
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It must be noted that the generalization ability of any machine learning 
method is an important factor in determining its usefulness in real-world 
applications. In the case of the proposed method for detecting abnormal 
driving behavior using pheromones and an improved ant colony algorithm, 
there are several factors that may impact its generalization ability.

One of the main parameters that can affect the efficiency of the method is 
the decision threshold used to identify abnormal driving behavior. If the 
threshold is set too low, the method may identify too many false positives, 
leading to a high rate of false alarms. On the other hand, if the threshold is set 
too high, the method may miss many instances of abnormal driving behavior, 
leading to a high rate of false negatives. Therefore, it is important to carefully 
select an appropriate decision threshold based on the characteristics of the 
dataset being used.

Another parameter that can impact the generalization ability of the method 
is the choice of features used to represent the driving behavior data. The 
method described in the paper uses pheromones to measure the preference 
path length of drivers, but other features may be more relevant for detecting 
abnormal driving behavior in different datasets. Therefore, it may be necessary 
to adapt the feature selection process to each new dataset being used.

Additionally, the choice of dataset used to train and test the method can also 
impact its generalization ability. The authors describe a specific dataset in their 
paper, but the method may not perform as well on other datasets with different 
characteristics. It may be necessary to collect additional data or fine-tune the 
method for each new dataset.

In summary, the generalization ability of the proposed method for detecting 
abnormal driving behavior using pheromones and an improved ant colony 
algorithm may be impacted by several factors, including the decision thresh
old, feature selection, and choice of dataset. Therefore, it is important to 
carefully consider these factors and adapt the method as necessary when 
applying it to new datasets.

Figure 9. The detection result after improvement.
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Conclusion

As a biological property, the behavioral characteristics of any two drivers 
cannot be exactly the same. Even the driving patterns of drivers in the same 
class can be quite different, making it difficult to construct universal criteria 
for abnormal judgment.

To address this issue, in this paper, we propose an abnormal driving 
behavior detection method by fitting behavioral characteristics of different 
drivers. The proposed method consists of three parts: First, based on the 
vehicle power feedback system, the data sequence which can reflect the 
driver behavior characteristics is formed with the steering wheel angle and 
expected speed as independent variables and the vehicle yaw velocity as 
dependent variables. Second, the cumulative conversion probabilities of the 
driver switching between different kinds of driving operations is calculated 
based on the pheromone concentration, and sequences of driving actions 
below a certain threshold in the test dataset are identified as abnormal 
driving behaviors. Finally, an improved ant colony algorithm based on 
simplicial algorithm is proposed, where the set of fixed points is used as 
the initial population to optimize the iterative process of the colony 
algorithm.

The results of the algorithmic tests show that the FP-ACO algorithm out
performs the conventional ACO algorithm in terms of convergence speed and 
convergence accuracy, especially when dealing with complex functions. 
Experimental results on driving data show obvious advantages of the proposed 
method in terms of accuracy and false alarm rate compared to the current 
algorithms. In addition, further experiment indicates that the detection effect 
shows a trend of improvement as the size of the sample dataset is enlarged.

Potential sources of overhead are based on the general characteristics of the 
method.

One potential source of overhead is the feature extraction process used to 
calculate the preference path length of drivers for various driving operations 
via pheromones. This process may require significant computational 
resources, especially if the dataset is large or complex. Additionally, using 
pheromones to represent driver preferences may require additional hardware 
or sensors to be installed in the vehicle, which could increase the cost and 
complexity of implementing the method.

Another potential source of overhead is using the ant colony optimization 
algorithm to optimize the initial population state. This algorithm may require 
significant computational resources, especially if the dataset is large or the 
convergence efficiency needs to be improved. Additionally, using fixed point 
simplicial theory may require additional mathematical computations, which 
could increase the computational overhead of the algorithm.
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The method requires some degree of computational overhead due to the use of 
complex algorithms and feature extraction processes. Nevertheless, the method’s 
potential benefits in improving safety in public transportation may outweigh the 
overhead costs, especially if the method is optimized and scaled appropriately.

Note

1. https://www.kaggle.com/c/axa-driver-telematics-analysis.
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