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ABSTRACT 
 
Normal depth plays a significant role in the design of open channels and in the analysis of the non-
uniform flow as well. Currently there is no analytical method for calculating the normal depth in the 
open channels. Current methods are either iterative or approximate and consider, unreasonably, 
Chezy’ coefficient or Manning’s roughness coefficient as a given data of the problem. Yet, both of 
these coefficients depend in particular on the normal depth sought and it is therefore unjustified to fix 
them beforehand. To overcome this drawback, the rough model method (RMM) seems to be the 
most appropriate tool. The RMM takes into account, in particular, the effect of the absolute 
roughness which is a readily measurable parameter in practice. The method is based on known 
referential rough model characteristics used to deduce the normal depth by means of a non-
dimensional correction factor. 
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1. INTRODUCTION 
 
Calculating the normal depth in open channels 
has been one of the major concerns of the 
hydraulic engineer. Normal depth plays a 
significant role in the design of open channels 
and in the analysis of the non-uniform flow as 
well. The proposed solutions to this problem 
were first graphics [1-3], and during recent years 
the proposed solutions have become 
approximate or iterative [4-8]. The computation of 
normal depth in a U-Shaped open channel does 
no exception to this rule [9]. The focus on this 
channel is purely practical as it is widely used in 
hydraulic structures. The most relevant study is 
certainly that of Swamee and Rathie [10], in 
which exact analytical equations for normal depth 
have been reported for rectangular, trapezoidal 
and circular cross sections. However, the 
solution is given in terms of an unlimited series 
whose application to the use of the engineer is 
not at all handy. The problem in the current 
methods of calculation is not primarily due to 
their iterative nature, but stems from the fact that 
they consider the Manning’s roughness 
coefficient as a given data of the problem, which 
is undoubtedly unfounded. Manning’s roughness 
coefficient, as well as Chezy’s coefficient, is not 
constant. These two coefficients depend in 
particular on the normal depth sought. It is 
therefore unjustified to set beforehand the value 
of these coefficients as a given data of the 
problem. The parameter that must be taken into 
account in the data of the problem is the absolute 
roughness, which is denoted . This is a physical 
parameter that reflects the state of the inner wall 
of the channel and which is easily measurable in 
practice. Currently, there is no explicit or 
analytical method that considers this parameter. 
In order to fill this gap and to enrich the literature, 
this study is proposed. It is based on a new 
method of calculation known as the rough model 
method (RMM) which has proven in a recent past 
[11-18]. This method introduced the absolute 
roughness  as a parameter of calculation and 
does not take into account neither Chezy's 
coefficient nor Manning's roughness coefficient. 
This is the particularity that distinguishes it from 
current methods of calculation. For the 
calculation of normal depth in U-Shaped open 
channel, the RMM requires only measurable 
parameters in practice, namely the discharge Q, 
the longitudinal slope i, the diameter D of the 
circular bottom of the channel, the absolute 
roughness  and the kinematic viscosity  of the 
flowing liquid. The RMM relies on known 

referential rough model characteristics obtained 
by application of the Darcy-Weisbach 
relationship [19]. The friction factor is considered 
as a constant and well defined in the rough 
turbulent flow domain. With a non-dimensional 
correction factor of linear dimension, the 
characteristics of the rough model are used to 
derive those of the studied channel, especially 
normal depth. Note that in the RMM, there is no 
restriction in the involved parameters and the 
resulting equations are valid in the entire domain 
of turbulent flow, corresponding to Reynolds 
number R > 2000 and relative roughness /Dh 
varying in the wide range [0; 0.05]. A calculation 
example is presented to better understand the 
calculation procedure and to appreciate its 
simplicity and efficiency. 
 
2. BASIC EQUATIONS 
 
The rough model method is based on the three 
well known turbulent flow equations, namely 
Darcy-Weisbach equation [19], Colebrook-White 
equation [20] and Reynolds number formula. The 
Darcy-Weisbach equation gives the longitudinal 
slope i of the channel as follows: 
 

2

2
2

h

f Q
i
D gA

                            (1) 

 
where Q is the discharge, g is the acceleration 
due to gravity, A is the wetted area, Dh is the 
hydraulic diameter and f is the friction factor 
given by the now famous Colebrook-White 
formula as: 
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where   is the absolute roughness and R is the 
Reynolds number which can be expressed as: 
 

4Q
R

P
                                                   (3) 

 
where   is the kinematic viscosity and P is the 
wetted perimeter. 
 

3. REFERENTIAL ROUGH MODEL 
 
All geometric and hydraulic characteristics of the 
rough model are distinguished by the symbol 
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" ". Fig. (1) compares the geometric and 
hydraulic characteristics of the current channel 
with those of its rough model. The rough model is 

particularly characterized by / 0.037
h
D   as 

the arbitrarily assigned relative roughness value, 

where hD is the hydraulic diameter. The chosen 

relative roughness value is so large that the 
prevailed flow regime is fully rough. Thus, the 

friction factor is 1 / 16f   according to Eq. (2) for 

R R  tending to infinitely large value. The rough 
model is also characterized by the 

width D D and the longitudinal slope  i i  (see 

Fig 1). The discharge is Q Q implying that the 

normal depth 
n
y

 
is such that n ny y

 
and 

even n ny y .  

 

y n

D

n ny y

D D

 
             a)                              b) 
 

Fig. 1. Schematic representation of normal 
depth in a vertical U-shaped channel. a) 

current channel. b) rough model 
 
Let us assume for the rough model the aspect 

ratio /
n
y D  , known also as the non-

dimensional normal depth. Inasmuch as n ny y , 

one can write  . Applying Eq. (1) to the rough 

model leads to: 
 

2

2
2h

f Q

D g A
i                                                   (4) 

 

Bearing in mind that 4 /
h
D A P and 1 / 16f  , 

Eq. (4) can be rewritten as: 
 

2

3
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1 P
Q

g A
i                             (5) 

The wetted perimeter P and the water area A  
are expressed respectively as: 
 

0

2
( ) A D C                                     (6) 

 

1
(2 ) P D C                            (7) 

 

where 
0

(1 / 4) / 2C and 
1

( / 2 1) C . 

Inserting Eq. (6) and Eq. (7) into Eq. (5) and 
rearranging leads to: 
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where 
*
Q is the relative conductivity expressed 

as: 
 

*

5
8 2


Q

Q
giD

           (9) 

 
All the parameters of Eq. (9) are known, which 
allows determining the value of the relative 

conductivity
*
Q . What is needed is the 

computation of the aspect ratio  using Eq. (8) 

for the given value of
*
Q . Let us assume the 

following change in variables: 
 

0
 X C                            (10) 

 
Thus, Eq. (8) is reduced to: 
 

3 *2 *2
2 0

4


  X XQ Q          (11) 

 
Eq. (11) is a cubic equation without second 
order. Its discriminant can be written as: 
 

*4 * *2 2 2 2

8 83 3 3 3

 
   

  
  
  

Q Q Q

      

   (12) 

 
Eq. (12) shows that two cases arise: 
 

1. 
* 3 3

16 2


Q , then 0  . The real root of Eq. 

(11) is: 
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*2 2
( / 3)

3
X Q ch                        (13) 

 
where the angle  is as: 

 

* 13 3
( )

16 2





ch Q                                   (14) 

 
ch is the hyperbolic cosine.   
 
Taking into account Eq. (10), the aspect ratio 

 in the rough model is expressed as: 

 

*
0

2 2
( / 3)

3
  C Q ch                      (15) 

 

2. 
* 3 3

16 2


Q , then 0  . The real root of Eq. 

(11) is: 
 

*2 2
cos( / 3)

3
X Q

 
 
where the angle  is as: 

 

* 13 3
cos( )

16 2





 Q                                (16) 

 
Taking into account the change in variables 

given by Eq. (10), the aspect ratio  in the rough 

model is then: 
 

*
0

2 2
cos( / 3)

3
  C Q                      (17) 

 
Eq. (15) and Eq. (17) give the exact value of the 

aspect ratio in the rough model.   

 
4. NON-DIMENSIONAL CORRECTION 

FACTOR OF LINEAR DIMENSION 
 
The rough model method states that any linear 
dimension L of a channel and the linear 

dimension L of its rough model are related by the 
following equation, applicable to the whole 

domain of the turbulent flow: 
 

L L                                      (18) 

 
where  is a non-dimensional correction factor of 

linear dimension, less than unity, which is 
governed by the following relationship [12,13]: 
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where R is the Reynolds number in the rough 
model given by: 
 

4Q
R

P
                                               (20) 

 
5. COMPUTATION STEPS OF NORMAL 

DEPTH 
 
To compute normal depth in a U-Shaped open 
channel, the following parameters must be given: 
the discharge Q, the diameter D, the longitudinal 
slope i, the absolute roughness  and the 
kinematic viscosity. All these parameters are 

measurable in practice. The normal depth 
n
y can 

be computed according to the following steps: 
 

1.  Compute the relative conductivity 
*
Q using 

Eq. (9). 

2.  Determine the aspect ratio   
by the use of 

Eq. (15) or Eq. (17) in accordance with the 
sign of the discriminant  .    

3.  Compute the water area A and the wetted 

perimeter P using Eq. (6) and Eq. (7) 
respectively. The hydraulic diameter 

4 /
h
D A P is then worked out. Use Eq. 

(20) to compute Reynolds number R . 

4.  Knowing 
h
D and R , compute the non-

dimensional correction factor of linear 

dimension  by the use of Eq. (19). 
5.  Assign to the rough model the following 

new linear dimension /D D according 

to the fundamental Eq. (18). 
6.  Thus, derive the new value of the relative 

conductivity 
*
Q using Eq. (9). 
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7.  Applying then one the Eq. (15) or Eq. (17), 
in accordance with the sign of the 

discriminant  , results in   .   

8.  Finally, the required normal depth ny  
is 

then: ny D   

        

6. PRACTICAL EXAMPLE 
 

Compute the normal depth ny in the vertical U-Shaped channel shown in Fig. 1 for the following data: 

 
30.843 /Q m s ,

2.5D m
, 

510i , 
310 m  , 

6 210 /m s  . 
 

1. According to Eq. (9), the relative conductivity 
*
Q is: 

 

*

5 5 5

0.843
0.761268859

8 2 8 2 9.81 10 2.5

Q
Q

giD



   

 

 
 

2. According to the calculated value of
*
Q , the aspect ratio  in the rough model is governing by Eq. 

(17), along with Eq. (16). The angle  is as: 

 

* 1 13 3 3 3
cos( ) 0.761268859 0.947673442

16 2 16 2
Q

 


  
  




 
 
leading to 0.324928853  radian  

 

According to Eq. (17), the aspect ratio   in the rough model is then: 

 

*
0

2 2
(1 / 4) / 2 0.761268859

3

2 2
cos( / 3) cos(0.324928853 / 3)

3

1.343163223

C Q 


  



 

 
 

3. Using Eq. (6) and Eq. (7), the water area A and the wetted perimeter P are respectively: 
 

 0

2 2 2
(1 / 4) / 2( ) 2.5 1.343163223 7.724139405A D C m     

 
 

 1
( / 2 1)(2 ) 2.5 2 1.343163223 8.142806933P D C m       

 
 

The hydraulic diameter 4 /
h
D A P is then: 

 

4 7.724139405 / 8.142806933 3.79433749
h
D m  

 

Using Eq. (20), Reynolds number R is: 
 

6

4 4 0.843
414107.8166

8.142806933 10 





 

Q
R

P  
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4. According to Eq. (19), the non-dimensional correction factor  was easily calculated as: 

 
2/5

/ 8.5
1.35 log 0.766322709

4.75






  
  

  
  

hD

R
 

 
5. Let us assign to the rough model the following new linear dimension:  
 

/ 2.5 / 0.766322709 3.26233318  D m  
 

The corresponding value of the relative conductivity 
*
Q is given by Eq. (9) as: 

 

*

5 5 5

0.843
0.391351771

8 2 ( / ) 8 2 9.81 10 3.26233318

Q
Q

gi D 



   

 

 
 

6. Considering the calculated value of
*
Q , the aspect ratio   in the rough model is governed by Eq. 

(15) along with Eq. (14). The angle  is as: 

 

* 1 13 3 3 3
( ) 0.391351771 1.84344197

16 2 16 2
ch Q

 


  
  




 
 
leading to 1.221443165  radian  

 

*
0

2 2
(1 / 4) / 2 0.391351771 1.221443165 / 3

3

2 2
c ( / 3) ( ) 0.8

3
C Q h ch  


     

 
 

7.  The require value of normal depth ny is thus: 

 

0.8 2.5 2   ny D m
 

 

8. This step aims to verify the validity of the calculations by determining the discharge Q using 
Chezy’s equation. The discharge so calculated should be equal to the discharge given in the problem 
statement. Chezy’s equation expresses the discharge Q as: 
 


h

Q CA R i
 

 

C is the Chezy’s coefficient and hR is the hydraulic radius.  

 

According to the rough model method, the coefficient C is related to  by the following formula: 

 

5/2

8 2




g
C

 
 

Hence: 
 

0.5

5/2 5/2

8 2 8 2 9.81
69.93031286

0.766322709
/



 
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g
C m s
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The water area A is given by Eq. (6) as: 
 

 0

2 2 2
(1 / 4) / 2( ) 2.5 0.8 4.32936926A D C m     

 
 
According to Eq. (7), the wetted perimeter P is as: 
 

 1
( / 2 1)(2 ) 2.5 2 0.8 5.42699082P D C m       

 
 

Thus, the hydraulic radius /
h
R A P is: 

 

4.32936926 / 5.42699082 0.79774767 
h
R m

 
 
Thus, according to Chezy, the discharge Q is: 
 

 hQ CA R i
  

3 35
69.93031286 4.32936926 0.79774767 10 0.84288369 / 0.843 /m s m s


     

 
 
The discharge so calculated and that given in the 
problem statement are almost equal, which 
clearly indicates the validity of the calculations. 

 
7. CONCLUSION 
 
The RMM was successfully applied to compute 
normal depth in a U-Shaped open channel. The 
method is based on simple hydraulic equations 
such as Darcy-Weisbach equation, Colebrook-
White relationship and Reynolds number 
formula. The method took into account the effect 
of absolute roughness and excludes Chezy's 
coefficient or Manning's roughness coefficient as 
a given data of the problem. The Darcy-
Weisbach relationship was first applied to a 
referential rough model whose friction factor has 
been arbitrarily chosen. This led to the 
establishment of an explicit relation between the 
aspect ratio and the relative conductivity. The 
obtained equation was of third degree, which 
was analytically solved using hyperbolic and 
trigonometric functions. From the known aspect 
ratio of the rough model, the non-dimensional 
normal depth and therefore the normal depth in 
the studied channel has been deduced, due to a 
non-dimensional correction factor. The practical 
example we suggested showed the reliability of 
the RMM as well as its simplicity and efficiency. 
The proposed method does not require the 
coefficients of Chezy and Manning, unlike current 
methods of calculation. The theoretical 
development as well as the calculation example 
we proposed show no restriction in the 
application of the rough model method. However, 

it should be applied to other shapes of geometric 
profiles to observe its scalability and 
performance. Its application to open channels 
should also be investigated to solve the problem 
of the normal depth which remains relevant. Also 
suggest the application of the rough model 
method to explicitly compute Chezy and Manning 
coefficients, whose relations are currently 
iterative to calculate the normal depth. 
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