British Journal of Mathematics & Computer Science

19(5): 1-15, 2016; Article no.BJM CS.29698
ISSN: 2231-0851

SCIENCEDOM AIN international

www.sciencedomain.org SCIENCEDOMAIN

Out-of-plane Equilibrium Pointsin the Photogravitational
Restricted Four-body Problem with Oblateness

Jagadish Singh*and Aguda Ekele Vincent™

'Department of Mathematics, Faculty of Science, Ahmado Beliversity, Zaria, Nigeria.
Authors’ contributions

This work was carried out in collaboration between both authorth Bothors read and approved the final
manuscript.

Article Information

DOI: 10.9734/BIMCS/2016/29698
Editor(s):
(1) Kai-Long Hsiao, Taiwan Shoufu University, Taiwa
Reviewers:
(1) Olaiju Olusegun Adeyemi, Federal Polytechriaxd, Nigeria.
(2) Kumari Ranjana, Lakshmibai College, University ofldeindia.
(3) Balwant Singh Rajput, Kumaun University, India.
(4) Ashutosh Narayan, Bhilai Institute of Technologyr® (CG), India.
Complete Peer review Historiattp://www.sciencedomain.org/review-history/16849

Received: 24 September 2016
— . Accepted: 2% October 2016
| Original Research Article | Published: 9" November 2016

Abstract

The restricted four-body problem consists of an infinitesiiaitticle which is moving under the
Newtonian gravitational attraction of three massive bodiaiéed primaries. The three bodies are moving
in circles around their common centre of mass fixed abthgn of the coordinate system, according to
the solution of Lagrange, where they are always at theegsrof an equilateral triangle. The fourth bgdy
does not affect the motion of the primaries. We considertiigaprimary bodyP; is dominant and is a
source of radiation while the other two small primaResndP; modeled as oblate spheroids have equal
masses and oblateness coefficients. The out of equilipaints of the problem are sought and we found
that such critical points exist. These points lie in K= plane in symmetrical positions with respect| to

XY —plane. We investigate numerically the effects of réoiiaand oblateness on the positions of out;of-
plane equilibrium points, their stability, as well as thgioes allowed to motion of the infinitesimal body
as determined by the zero velocity surface. It is foundrtthaition and oblateness have strong effects on
the positions of the critical points. We examined the stgloli these points and found that the out| of

plane equilibrium points are unstable.

Keywords: Equilibrium points; restricted four-body probleradiation; oblateness; zero velocity curves
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1 Introduction

One of the most extensively studied problems in Celestiah®técs is the Circular restricted three-body
problem (CR3BP, for short), described as the motion of amitedimal mass moving under the gravitational
effects of two finite masses, called primaries, whitbive in circular orbits around their common center of
mass on account of their mutual gravitational attraction tAedinfinitesimal mass not influencing the
motion of the primaries. The restricted four-body probl&4BRP) is perhaps the simplest model after the
R3BP and a natural generalization of it. It deals with thotion of an infinitesimal particle under the
Newtonian gravitational attraction of three bodiedledaprimaries, whose trajectories are the solution of the
three Newtonian body problems. In the same direction, asaeestricted three body problems have given
much insight about real three body problem, the R4BP candukarsintermediate step for the exploration
of the general, planar or three-dimensional, four-body problem.

Here, we are interested in the special case of the R4#P|Circular equilateral restricted four-body
problem (CER4BP)”, where the primaries have theimgiaar equilibrium configuration (see Section 2).

In the classical problem, the effects of the grawtel attraction of the infinitesimal body and other
perturbations have been ignored. These perturbations inelddiional forces in the potential of the

classical problem which may make it more realistic fertain applications. Perturbations can well arise
from the causes such as from the lack of the sphericityeotriaxiality, oblateness, and radiation forces of
the bodies, variation of the masses, the atmospheric ttheagplar wind, Poynting Robertson effect and the
action of other bodies.

Unfortunately, the classical circular restricted four-bodybfgm does not consider the case when at least
one of the interacting bodies is an intense emitteradfation. In certain stellar dynamics problems, it is
altogether inadequate to consider solely gravitationaefolf hus, it is reasonable to modify the classical
model by superimposing a radiative repulsion, whose sowiceides with the gravitational field of the
main bodies. The importance of radiation influence on dalebbdies has been recognized by many
scientists, especially in connection with the formatiorcaficentrations of interplanetary and interstellar
dust or grains in planetary and binary star systemsjeisas the perturbations on artificial satellites (see
e.g., Kalvouridis [1], Bewick et al. [2] and referendiesrein).

The term photogravitational R3BP was introduced by Radzig@. This extended version of the classical
R3BP takes into account only the radiation pressure compohtrd mdiation drag, which is the next most
powerful component after the gravitational forces. LaRarizievskii [4] performed a complete treatment of
the behavior of the equilibrium points. Besides five Boim points of the classical problem, he found
two equilibrium points on the (x, z) plane in symmetripakitions with respect to the (X, y) plane. Many
authors (i.e., Perezhogin [5]; Kunitsyn and Perezhogin [6]; Btigiri7]; Simmons et al. [8]; Ragos and
Zagouras [9,10]; Singh [11]) developed and extended Radzievskii [Bgel to introduce more
understandable issues related to the motion of the pairtithe field of radiating primaries.

On the other hand, the R3BP assumes that the masses conceznagharically symmetrical in
homogeneous layers, but it is found that celestial bodiek, asiSaturn and Jupiter, are sufficiently oblate.
Therefore, the study of motion of particles under oblaterkésst decomes realistic an important field of
research. Recently, Douskos and Markellos [12] investigdtedout-of-plane equilibrium points in the
R3BP with oblateness. They used the three-dimensional egsatif motion written by Sharma and
SubbaRao [13] and expanded the equations of motion in powies s®lutions about the oblateness
coefficient of the second primary.

It would be very illuminating to recall that, in the gesleproblem of three bodies, there is a particular
solution in which the bodies are placed at the vertifes equilateral triangle, each moving in a Keplerian
orbit. This is well known, and was first studied by Lagge [14]. He found a solution where the three bodies
remain at constant distances from each other while thegiviex around their common center of mass.
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There has been recently an increased interest for thiglnfbalgrange equilateral triangle configuration)
because of its astronautical applications. This modelusad, among others, by Pedersen [15], Brumberg
[16], Simo [17], Majorana [18], Alvarez-Ramirez and Vidab], Baltagiannis and Papadakis [20,21],
Ceccaroni and Biggs [22], Burgos-Garcia and Delgado [23JadRapis and Papadakis [24,25], Kumari and
Kushvah [26], Singh and Vincent [27], etc. The model has beed for practical applications by some
researchers, among others, Ceccaroni and Biggs [22],giaitas and Papadakis [21], and references
therein. However, to the authors’ knowledge presentlyetfdibrium points out of the orbital plane of the
primaries for this model have remained an open problem ¢o dat

The interest in the Lagrange configuration when the pigaaeceive different perturbing forces, compared
to the classical case, has been revived recently. Pajmama Papadakis [24] investigated the problem
when only the first primary body radiates. They studied thstenxie, location and stability of the
equilibrium points, on and out of the orbital plane for tvases depending on the masses of the primaries
namely; two equal masses and three equal masses. Thegveabghat existence and stability of the
equilibrium points depend on the mass parameters of theugesnand the radiation factor. Besides, closed
regions where the motion of the infinitesimal body can bgped were given. Later, Papadouris and
Papadakis [25] studied the simplest symmetric perioaligtisns of the problem for the case of two equal
masses. They studied the effect of radiation on thdldision of the periodic orbits, their stability, as well
as the evolution of the families as the radiation paranverés. Poincare surface of section of the problem
as the dominant primary radiates were illustratedndysi similar form of their equations of motion, Singh
and Vincent [27] studied the out-of-plane equilibrium points ofgiablem by taking all the primaries as
radiation sources with two of the bodies having the samati@ad and mass value. They noted that radiation
factors have noticeable effects on the locations of thiead points and the zero velocity curves. The
stability of these points is found to be unstable.

The stability region of equilibrium points under the aibhess effects of first two bigger primaries was
investigated by Kumari and Kushvah [26]. They establigright equilibrium points, two collinear and six
non-collinear and observed that the stability regionsefetquilibrium points expanded due to the presence
of oblateness coefficients and various values of Jacohstant C. The allowed regions of motion of the
infinitesimal body as well as the regions of the basinstcdaion for the equilibrium points were given.

In the present paper we deal with the equilibrium points lwkigst out of the orbital plane in the case when
two of the small primaries modeled as oblate spheroEl®faequal masses and oblateness coefficients and
the dominant primary body is a source of radiation. Also,itfieitesimal body is assumed to have no
influence on the motion of these primaries. In this wark,shall use the paper Singh and Vincent [27] as a
guide following the same numerical techniques in ordemieeili the effect provided by oblateness of the
two small primaries and the radiation pressure of theimmh primary on the existence of equilibrium
points and their linear stability in the CER4BP. Thisdelacould be used to examine the existence of a dust
particle in the Sun, Jupiter, Saturn, Spacecraft system.

The paper is organized as follows: Section 2 determiregdhations of motion of the considered model-
problem. In Section 3, the existence and location of theofeplane equilibrium points are investigated
while Section 4 is devoted to the surfaces and curves ofvebooity. The regions of allowed motion as
determined by the zero velocity surface and correspgnéguipotential curves as well as the positions of
out of plane points as the radiation and oblateness paramatérs are given. Section 5 establishes their
stability; while Section 6 discusses the obtained resnttanclusion of the paper.

2 Equations of Motion

Consider three primary bodi®s, P,, Ps, called hereafter the primaries, of massean, , ms, respectively,
with M, >> M, =M, moving in circles around their center of mass fixed atotigin of the coordinates.

These masses always lie at the vertices of equilatesaigle with the dominant bodl; being on the
negativex-axis at the origin of time. A massless particle isving under the Newtonian gravitational
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attraction of the primaries and does not affect the maifaihe three bodies. The motion of the system is
referred to as axes rotating with uniform angular velociye mutual distances of the three primaries
remain unchanged with respect to time. This configuratiavels known to be stable if the masses satisfy

the condition of Gascheau’s inequality (see for detadscheau [28] and Baltagiannis and Papadakis [20]).
The equations of motion of the problem are derived imélai way to the classical R3BP (Szebehely, [29]).

The system is dimensionless, i.e., the units of measfuength and time are taken so that the sum of the
masses and the distance between the primaries is unity, smdhal Gaussian constant of gravitation G is 1.
The equilateral configuration is possible for all distribusioof the masses, whilst the fourth body of

negligible mass moves in the same plane. The factoraaaring the radiation pressure of the dominant
primaryP; and the oblateness coefficients of the two small piegagP, andPs) are also taken into account.

The notationg, =1— £, as related to Schuerman [30] is the reduction factothiamass of the dominant

body where,B’l stand for the ratio of the magnitude of radiatidt?} | to gravitational Fg ) force due to the

body. It is clear that: If ¢, =1, the radiation pressure has no effecO K a, <1, gravitation force exceeds
radiation. If g, = O, the radiation force balances the gravitational oneewfuif g, < O, the gravity is
strengthened by radiation, a case which will be consideredrirstudy. The perturbed mean motiAnis
R R2 .
given by: n® =1+>= (A2 +A;), where A —?, I =2,3 are the oblateness coefficients of
oblate bodiesP, andP3 respectively W|thRE and F\’P as the equatorial and polar radii respectively &hd
is separation between the primaries. In general, we(avéy <<1; A is small in the solar system, for
details see Sharma and SubbaRao [13].

Let the coordinates of the infinitesimal mass key], then the coordinatesx(, y;) of the primaries are:

V3

X = —,u\/é, Vi =0, X, =X, =7(1—2,u), Y, =Y = —% , relative to the rotating frame of

m
referenceOxyz with [/ = 2 = M is the mass parameter whetel ] (O,]/ 2).
m+m+m, m+m, +m,

The differential equations of motion in three dimensionthe dimensionless variables and the barycentric—
synodic coordinate system are written as (Douskos ankellies [12]; Papadouris and Papadakis [24]):

X -2ny=Q,,
y+2mx=Q,, (1)
2=Q,,
where
n? 1-2
aixy,2) = (¢ +yr) BT M M g 3T + -3 2 o
2 r r, Iy 2r, r, 2r, r’
and

r7=(x+3u)? +y* + 2,
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A

% =(x—73(1—2/1))2 +<y+%)2 +22,

7

% :(X—;(l—zﬂ))z +<y—%)2 +22.

wherer, r, andrs are the distances of the infinitesimal body from the gries,Q is the photogravitational
potential, dots denote time derivatives, the suffixeg and 2 indicate the partial derivatives 6t with
respect t, y and 2 respectively.

System (1) admits the Jacobian integral

V2= X +y2+22=20(xY,2) -C (3)
whereC is the Jacobi Integral Constant. The quantity on the right-haedo$i(3) should be larger than or
equal to zero for every value of time and the given init@iditions. If the velocity/ is put equal to zero,
the algebraic equation

20 (x,Y,2) =C (4)

will define, by taking various values of the integrationstant C (through the initial conditions), a family of
surfaces where it is possible for the infinitesimalssito move on one side and impossible for it to move on
the other.

We remark that whenevel, =1and / or A, = A, =0, the gravitational case of Baltagiannis and
Papadakis [20] is recovered. In the case when only the damprimary body radiates and the other two
small primaries are not oblate spheroid%z(: A3 =0), the equations of motion fully coincide with that
given by Papadouris and Papadakis [24].

3 Existence and L ocation of the Out-of-Plane Equilibrium Points
The position of the out-of-plane equilibrium points can be éxadnsolving (1) by setting
X:y:z:x:y:z:o (5)

and considering#0. That is, they are the solutions of the equations

‘E’ 1-24)) p(x—‘f’ (1-24)) ?w%(x-f - 2#))(1-?;22)

o Gl-2 3 M

r13 r23 r33 ZrZS
& 37 3 NG
LA (X Y (1-24)A- 7) 3;1A222(x—7 (-24)) 3uAZ3(x Y 1-2u))
- S+ + =0,
27 r, ry
(6)
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1 1,3 1,32 20, L
Myi)_ﬂ(y_z)_%(yi)a 2 AV Az

nzy_oa(l_Z,U)Y_ +
re ry re 2r; > ry
1
BuAZ* (y - 2
+————<=0, @)
r3

Z 1 1 37 3z
UA(—,—5) AL, —5) 3IAL-—) 3AL-—)

b I s 1 + r + s =0 (8
2} 2 2r;

Gd-24) M H_
re 2o 2}

With
r7=(x+V3u)? +y +2°,
ry = (><-§(1-2u))2 +(y+%)2 +7°,
2= (x—?(l—zu»? +(y—§)2 +22

If y =0, (7) is fulfilled (sinceA, = A;) and we solve (6) and (8) for y = 0 ang:D. This results in the

following equations

J3 V3 3z
20U(x, — > (1-2 3, (%o —— L=21))1~—7)
n2x0 _ q, L= 24)(%, +\/§/u) _ H% 2 ( ) _ ° 2 I’220 +
rl% rZ?E) r250
V3
6UAZ (%~ (= 240)
7 =0, 9)
r.20
y| 3z°
o SHACET ) ALY
G ( : /1)+_,§1_ 0 o, S (10)
r.10 r20 r20 r20
Where
n’> =1+3A,,

o= (% +V30)° +2
B -2y Loz A=

2 _ .2 _
rzo_rao—(xo_7



Singh and Vincent; BIMCS, 19(5): 1-15, 2016; Aetisb.BIJMCS.29698

and the subscript ‘0’ is used to denote the equilibrium galue

The positions of the out-of-plane equilibrium points are thetisas of (9) and (10). It is worth mentioning
here that out-of-plane equilibrium points do not exist for emybination of the parameters of this model-

problem (the mass paramefer radiation factorg, and oblateness coefficierﬁ\2 of the primaries). An

interesting result is that there are combinations of thengeteas of the problem for which the critical points
may exist.

In the present work, we have considered the two small @qumaaries with masses, =m, = 1= 0.0190
and a dominant primary body with mags=1- 24 = 0.962.

We note here that in the previous studies a necessary conditioder to exist critical points out-of-plane is
to consider negative values for the radiation factors {seeletails Radzievskii [3], Simmons et al. [8],
Papadouris and Papadakis [24] and Singh and Vincent [27]). dlowihg the Radzievskii [3,4]
assumptions, we will investigate in this section the existemd location of out-of-plane equilibrium points
in the case where1< g, <0ando< A, <<1.

Now for x4 =0.0190, there are intervals df, of the form-1<q, <0and0< A, <<1 for which there exist

two out-of-the plane equilibrium points, which are denotedL@yand L;. Their positions studied via
numerical computation using the software package ‘Mathealatre located in the X,z ) plane in
symmetrical positions with respect to th¥ (y ) plane. Tables-33 and Figs. +3 present the positions of
the out-of-plane equilibrium points aézvaries, for fixed values @, . Evidently, there correspond to cases

when we sefy, =-003-001 and —0.0010f varying oblateness of the two small primaries. Wéve

observed that as the radiation and oblateness pgesnincreases the positions of the out-of-plane
equilibrium points are affected. As has been alyemdntioned out-of-plane equilibrium points maysexor
other values of mass paramejgrsatisfying the condition of Gascheau (inequalityprder to the Lagrange

central configuration to be linearly stable.

Table 1. Numerical computations of the out-of-plane equilibrium pointsfor x4 =0.019Q g, =-003 and
varying oblateness coefficients

A Xo 7,

0.0000 -0.00244885 2.16893
0.0015 -0.00242942 2.17089
0.0030 -0.00241019 2.17285
0.0045 -0.00239115 2.17482
0.0060 -0.00237231 2.17679
0.0075 -0.00235365 2.17877
0.0090 -0.00233518 2.18075
0.0105 -0.00231689 2.18273
0.0120 -0.00229878 2.18472
0.0135 -0.00228085 2.18672
0.0150 -0.00226310 2.18871
0.0165 -0.00224552 2.19072
0.0180 -0.00222811 2.19272
0.0195 -0.00221087 2.19474
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Table 2. Numerical computations of the out-of-plane equilibrium pointsfor 4 =0.019Q g, =-001 and
varying oblateness coefficients

A X, * z,
0.0000 -0.0159853 0.804573
0.0015 -0.0159104 0.803895
0.0030 -0.0158362 0.803216
0.0045 -0.0157627 0.802536
0.0060 -0.0156899 0.801856
0.0075 -0.0156178 0.801174
0.0090 -0.0155463 0.800491
0.0105 -0.0154755 0.799808
0.0120 -0.0154054 0.799123
0.0135 -0.0153359 0.798437
0.0150 -0.0152670 0.797751
0.0165 -0.0151988 0.797063
0.0180 -0.0151312 0.796375
0.0195 -0.0150642 0.795685

Table 3. Numerical computations of the out-of-plane equilibrium pointsfor x4 =0.019q q, =-0.001and

varying oblateness coefficients

A X, tz,
0.0000 -0.0290377 0.306112
0.0015 -0.0289624 0.305499
0.0030 -0.0288880 0.304889
0.0045 -0.0288144 0.304282
0.006( -0.028741 0.30368!
0.0075 -0.0286695 0.303080
0.0090 -0.0285982 0.302484
0.0105 -0.0285276 0.301892
0.0120 -0.0284578 0.301303
0.013¢ -0.028388 0.30071
0.0150 -0.0283204 0.300134
0.016¢ -0.028252 0.29955!
0.0180 -0.0281857 0.298979
0.0195 -0.0281194 0.298406

From Fig. 1, it can be seen that whgt= 0.01900, = —-003and 0< A, <<1, the curves (positions of

out-of-plane points) increase. The results in Tablare the numerical evidence of the critical oint
Inspection of Fig. 2 indicates that, whgh=0.0190q, =—-001and 0< A, <<1,the curves decrease.
The results in Table 2 present the numerical evidenwWe observe from Fig. 3 that when
#=0.0190q, =-0.00Jand 0< A, <<1, the curves are slightly lower as the critical psimbove

closer to the dominant primary body. A strikingidtration of this can be seen in Table 3. As mestio
previously, the dominant primary body is on theateg X -axis at the origin of time. Comparing Figs. 1
and 3 shows that, the positions of out-of- plangildgium points moves in opposite direction. Henftem
Figs. 1—3, we see that fgz = 0.0190and increasing values of radiation and oblatenasanpeters, the

positions of out-of-plane equilibrium points argrsficantly affected.
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— 0. D00 —0.0015 —0.0010 — 0. 005 LK
X

Fig. 1. Position of L;and Ljinthe (X -Z) planeasafunction of A, intheinterval 0< A, <<1,
forg, =—003, £ =0.019
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PSR T T T S TR NN T TR T S N
0011  -0.010 —0.000

—0.012

-0.015 -0.014 -D0.013
x

—0.016

Fig. 2. Position of L;and Ljinthe (X -Z) planeasafunction of A, intheinterval 0< A, <<1,
forg, =—001, £ =0.019
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P
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.:|_1 - -

01k i

-0.028

Fig. 3. Position of L and Ljinthe( X -Z) planeasafunction of A, intheinterval 0< A, <<1,
for ¢, =—-0.001, 7 = 0.019

4 Zero-velocity Curvesin the (x,z) Plane

The usefulness of the Jacobi constant integralanfging certain general properties of the relatimotion
of a small body by the construction and investmatf zero velocity curves in every problem of stk
dynamics cannot be overemphasized. For certaiialigibnditions, these surfaces divide the spaae tinb
regions where the infinitesimal fourth body is fiteemove for various values of the Jacobi cons@nin
this section, we present the contours of the sarfaron the K, Z) plane, for zero velocity, which provide

the zero velocity curves. In Fig. 4, we plot theeeo velocity curves fogs = 0.0190 and various values of
radiation and oblateness parameters i@.~-003 A, =0),(q, = -001 A, = 001),(q, = —0.001 A, = 002)
correspondingly. Large (black) dots indicate thienpry bodies, while the small ones are the outplafie

equilibrium points of the problem. From these figgirit is obvious that radiation and oblateness hav
significant effects on the structure of the regialiswed to motion of the infinitesimal fourth badyn all

cases, between centre of the dominant prinﬁr)and its companion out of plane equilibrium poirite

zero velocity curves form small ovals of regiong abowed to motion which shrink as the radiatioda
oblateness parameters varies.

5Linear Stability of the Out-of-Plane Equilibrium Points

In order to study the linear stability of the odtpdane equilibrium pointsl_i2 we transfer the origin to

(X .0, Z;) and linearize the equations of motion, obtaining:

10
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& =2 = £(Q%) +n(Q)+{ (QY).
fji+2né=&(QY)+n (Q))+{ (Q3,), (11)
{ = &(Q%)+n (Q3)+{(Q3),

where the superscript ‘0’ indicates that the phdixivatives are to be evaluated at out of plaomtp

(X,.0, Z,).

stz @ stz ®
4, =-0.03 41=—0.01
A2=A3=0 A2=-A3=0001
- C = 0.0053630 C =0.0360610
) L | al
1
] [ ] [ 0 [ ]
Py Paa B Pia
w1}
1L . 4 1L
- VL5 -
_4 A _:l
X X
-0.4 -02 0.0 0.2 0.4 -0.4 -02 0.0 0.2 0.4
T T T T T
stz © |
g41=—0.001
A2 A3 =002
C = 0.0630055
al |
i
o B2 P ]
L3
—alL J
—4L B
X
. . . . L
-0.4 -0.2 0.0 0.2 0.4

Fig. 4. Zero velocity curvesin the (x, z) planefor ¢ =0.019 and for ¢, =—-003, A,,; =0(Frame
@), ¢, =—001 A,,; = 001(Frame (b)) and g, =—0.001 A,,; = 002 (Frame (c))

Explicitly, the partial derivatives of system (Idre

11
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0 N0 — N0 — N0 _—
Q% =0°%=0Q%=0% =0,

V3 2
o -143A _q(l-zm{l_atxo+f3m2}_2u{1_3%z§}3%(r§o—3z§)u A i
. r1?E) r.120 r.230 r24 0 r.27 0 rZZO

+

5
I’20

V3 2
6(% —— - A-2W)" 1 2
> [LJD%Q},

I’20

62z, 1(X —@(1—2 )
0 - oo = 32 A-20)( +V3p) RN BT oA, 7AZ
sz - sz - 5 + 5 1+ 2 4
o M0 M0 M0
2 _ 2
Az, -2 - zmw[w]

2 o

- 2 2 _n2
Q0 =143, - B0-2) _2_5(1_ 3 J+ 6425 (1_ 5 J_sAz(rzo7 3zo)u(1_ 5 J

Mo M0 4ry, M0 250 M0 4ry,

_ q@-20)|. 3% | 24|, 3% | 3A(x-32)U|, 5% | 6AuU
Q(z)z‘_ql 3 1_7223 T3 1_% -2 2 & 1_7220 - A;Z [Zé 105 -11,) +r240]
o o ] Tao 20 20 20 20
with
5= (% +/30)* +25
V3 1
rz?): I’320=(X0—7(1—2/.1))2+Z+Z§, A=A
The characteristic equation corresponding to sys¢idhis
A +al*+b¥+c=0 (12)

with

a=4n’-Q°%xx-Q°yy-Q°%zz
b=Q%xQ°yy + Q°yyQ°zz+ Q722 °xx— 4Q°zz- (Q°x2)*
c=(Q°%x2*Q%y - Q%xxQ°yyQ°zz

which is a polynomial of sixth degreejin

The eigenvalues of the characteristic equation {IE2¢rmine the stability or instability of the respive
equilibrium points. An equilibrium point will be ale if the characteristic equation (12) has siagmary

roots, otherwise it is unstable. We have computedccharacteristic root)sli ,i =1...6 as the radiation and

oblateness parameters varies with an arbitrarylstegd and found no case in which all the rootspamely
imaginary. Hence, we conclude that the out-of-plamqeilibrium points are unstable.
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6 Discussion and Conclusion

In this contribution, we study the existence arel stability of out-of-plane equilibrium points iestricted
four-body problem formulated on the basis of Lagian configuration when the dominant primary is a
source of radiation and the other two small priegurinodeled as oblate spheroids are of equal masdes
oblateness coefficients. Our result shows the ex¢® of two out-of-plane equilibrium points. Asist
known, such points do not appear if only the getidhal forces are considered. We observed th#teas
radiation and oblateness parameters increase, ¢isitiops of out-of-plane equilibrium points are
significantly affected (see Tables 1—3 and Figs. 3—In the absence of oblateness coefficients (

A, = A, =0), our problem correspond to those of PapadouldsRapadakis [24] in the case of two equal

masses. In the absence of radiation and oblatéaetsss (0, =1 A, = A; = 0), our problem correspond

to those of Baltagiannis and Papadakis [20]. Hamethe out-of-plane equilibrium points remainstahie
despite the introduction of radiation pressure ahthteness of the dominant and small equal prirearie
respectively. Radiation and oblateness are sedrave significant effects on the topology of theozer
velocity curves in the X,2) plane. In particular, between the centre of toenithant primary and its

companion out-of-plane equilibrium points, the zeetocity curves form small ovals of regions ndbaled

to motion which shrink as the radiation and oblatsnparameters vary. Similar phenomenon we observe
the topology of zero velocity curves in the (x,pine of a R3BP with oblateness and of photograwital
R4BP by Douskos and Markellos [12] and by Papadand Papadakis [24] correspondingly. Most notably,
this is the first study, to our knowledge to invgate the existence and stability of out-of-plageikbrium
points in the photogravitational restricted foudigroblem with oblateness.
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