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This study assessed landslide susceptibility in Shahpur valley, situated in the

eastern Hindu Kush. Here, landslides are recurrent phenomena that disrupt the

natural environment, and almost every year, they cause huge property damages

and human losses. These damages are expected to escalate in the study area

due to the high rate of deforestation in the region, population growth,

agricultural expansion, and infrastructural development on the slopes.

Landslide susceptibility was assessed by applying “weight of evidence” (WoE)

and “information value” (IV) models. For this, the past landslide areas were

identified and mapped on the SPOT5 satellite image and were verified from

frequent field visits to remove the ambiguities from the initial inventory. Seven

landslide contributing factors including surface geology, fault lines, slope aspect

and gradient, land use, and proximity to roads and streamswere identified based

on indigenous knowledge and studied scientific literature. The relationship of

landslide occurrence with contributing factors was calculated usingWoE and IV

models. The susceptibility maps were generated based on both the WoE and IV

models. The results showed that the very high susceptible zone covered an area

of 14.49% and 12.84% according to theWoE and IVmodels, respectively. Finally,

the resultant maps were validated using the success and prediction rate curves,

seed cell area index (SCAI), and R-index approaches. The success rate curve

validated the results at 80.34% for WoE and 80.13% for the IV model. The

calculated prediction rate for both WoE and IV was 83.34 and 85.13%,

respectively. The SCAI results showed similar performance of both models in

landslide susceptibility mapping. The result shows that the R-index value for the

very high LS zone was 29.64% in the WoE model, and it was 31.21% for the IV
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model. Based on the elements at risk, a landslide vulnerabilitymapwas prepared

that showed high vulnerability to landslide hazards in the lower parts of the

valley. Similarly, the hazard and vulnerability maps were combined, and the risk

map of the study area was generated. According to the landslide risk map, 5.5%

of the study area was under high risk, while 2% of the area was in a very high-risk

zone. It was found from the analysis that for assessing landslide susceptibility,

both the models are suitable and applicable in the Hindu Kush region.
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Introduction

Globally, the frequency of geo-physical and hydro-

meteorological disasters has increased in the last two decades

with its devastating consequences (Rahman et al., 2017).

Landslides are among the geo-physical hazards that cause

huge damage to human lives, property, and infrastructure

(Wubalem, 2021; Shano et al., 2020). The Hindu Kush

Himalayan (HKH) region is a young mountain system where

landslides, snow avalanches, floods, and earthquakes are very

common (Rahman et al., 2017). In this region, landslides are

recurrent phenomena and are often initiated either by seismic

activity, prolonged rainfall, and/or human-induced factors

(Regmi et al., 2014; Santangelo et al., 2021; Li, 2022a). The

frequent landslide events have been causing damages to

property as well as infrastructure and sometimes led to

human losses. In the literature, it is reported that the global

share of landslides was five percent among all the natural hazards

during 1990–2005 and tend to increase in the future because of

seismic activities, increasing rainfall intensity due to climate

change, and anthropogenic activities on the fragile slope

(Kanungo et al., 2009; Cui et al., 2021). In 2018, the

cumulative share of flooding and landslides in global

catastrophic events was 46% among all natural hazards.

Landslide is a natural geomorphic process (Allen et al., 2011;

Nandi and Shakoor, 2010) mainly governed by the local area

surface geology, seismicity, slope gradient/aspect, drainage

density/pattern, land use type, and precipitation (Sudmeier-

Rieux et al., 2012). In the mountainous area, prolonged

rainfall increases the probability of landslide. Similarly, seismic

activities and surface lithology are other important contributing

factors that govern and initiate slope instability (Van Westen

et al., 2010; Li et al., 2021b). Additionally, human intervention in

the form of road construction, expansion of human settlement,

deforestation, and agricultural activities on fragile slopes further

intensifies the probability of landslide occurrence (Rahman et al.,

2017; Zhou J. et al., 2021; Li, 2022b).

Many researchers have conducted studies to explore the

landslide impacts including human losses, property damage,

and infrastructure damages (Davies, 2022; Spegel and Ek,

2022). Very little work has been carried out yet on the

impacts of landslides on the natural environment and

ecological system. The environmental effects caused by

landslides are changes in agricultural activities, changes in

river morphology, and changes to the natural ecosystems

(Nakamura et al., 2000). Other effects included sedimentation

in river channels and flash floods due to breaching of landslide

dams (Tien et al., 2021). Landsliding disturbs the natural habitat

of certain endangered species in the susceptible zone and also

affects the biodiversity of the affected area; therefore, strict forest

preservation measures are highly required to reduce

environmental damages (Geertsema and Pojar, 2007).

The geo-spatial probability of the slope failure is termed

landslide susceptibility. The occurrence of slope failure depends

on the presence of some geo-environmental elements (Guzzetti

et al., 2005; Li et al., 2021a). During the last decade, numerous

scientific studies, including those by Chen and Wang (2007),

Goetz et al. (2015), Rahman et al. (2017), Wang et al. (2019), and

Ali et al. (2021), have been conducted on fragile mountains and

subsequently used a wide range of empirical approaches for

analyzing landslide susceptibility to identify the extent of

potentially susceptible zones. Quantitative, semi-quantitative,

and qualitative techniques have been extensively applied in

many studies to map landslide hazard zones (Van Westen

et al., 2008; Abdı et al., 2021). In landslide indices, semi-

quantitative, quantitative, and qualitative methods are adopted

for the identification of landslide-prone areas that have similar

geological and geomorphological characteristics (Kouli et al.,

2010). In qualitative methodologies, the rating procedure is

totally based on indigenous knowledge, whereas semi-

quantitative methods are based on weighted procedures

(Abdo, 2022). However, quantitative methods use statistical

techniques to find out the relationship between factors

initiating landslides and landslide events (Rahman et al., 2019).

A number of methodologies and models are in practice for

prediction and susceptibility mapping of landslides globally. The

spatial probability of landslides can be predicted by applying

various quantitative methodologies such as frequency ratio (FR),

weight of evidence (WoE), information value (IV), fuzzy neural

network (FNN), analytical hierarchy (AH), index of entropy

(IoE), analytical hierarchy process (AHP), logistic regression

(LR), and fuzzy logic (FL) (Mohammady et al., 2012; Talaei,
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2014; Shahabi and Hashim, 2015; Moazzam et al., 2020).

However, WoE and IV models have been frequently used for

areas with a similar environmental set-up, and therefore both

models are applied in this study (Bacha et al., 2018; Mersha and

Meten, 2020; Singh et al., 2021). The HKH is an active seismic

region, and hence most of the landslides have been initiated by

seismic activities and torrential rainfall during monsoon (Kamp

et al., 2010). In the HKH region, developmental work over the

fragile slopes frequently encourages landslides. This study is an

integrated approach that assesses landslide susceptibility,

exposure, vulnerability, and risk in the Shahpur valley, eastern

Hindu Kush, and is a basic part of disaster risk management

planning. Worldwide extensive work has been carried out

recently on landslide susceptibility assessment and mapping

(Myronidis et al., 2016; Stanley and Kirschbaum, 2017; Bui

et al., 2020; Wang et al., 2020; Chen and Chen, 2021; Ngo

et al., 2021; Youssef and Pourghasemi, 2021) and in the

Hindu Kush Himalayan region (Ahmed et al., 2014; Rahman

et al., 2017; Rahim et al., 2018; Khan et al., 2019; Gautam et al.,

2021), but limited research has been carried out on landslide

vulnerability and risk (Ram and Gupta, 2022). It is, therefore,

necessary to map the landslide vulnerable and risk areas which

will help in minimizing the landslide risk and will provide a base

for management. In this regard, the present study has

FIGURE 1
Digital elevation map of Shahpur valley.
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investigated landslide-prone areas using GIS-based information

value and weight of evidence models. Consequently, the resultant

maps were validated through success and prediction rate curves,

seed cell area index (SCAI), and R-index approaches. The

unavailability of temporal landslide records is the major

limitation of this study, and therefore the susceptibility map

was then considered a hazard map for vulnerability assessment.

The vulnerability to landslide hazards was calculated based on

the exposure of elements at risk to landslide hazard/

susceptibility. Based on indigenous knowledge, the probability

of loss to each element at risk was calculated for vulnerability

mapping. Then, based on the function of hazard and

vulnerability, the landslide risk map was generated for the

study area.

The study area

The study area, Shahpur valley, lies in the Hindu Raj

Mountains. These mountains are considered the offshoot of

the Hindu Kush ranges (Rahman et al., 2019). Moving from

the north to south, the height of these mountains tends to

decrease. The latitudinal extent of the valley is 34° 52′ 31″ to

35° 9′ 35″ north, while the longitudinal extent is 72° 40′ 10″ to 72°
48′ 44″ east (Figure 1). Climatically, Shahpur valley is part of the

moist temperate zone. The valley receives ample amount of

rainfall from monsoon in summer, while in winter, heavy

snowfall occurs at higher altitudes (Rahman et al., 2019). The

average annual temperature of the valley is 18°C, and it receives

1,200 mm of rainfall annually (GOP, 1998). In winter, the rainfall

occurs due to western disturbances which are usually

accompanied by snowfall, while in summer, rainfall occurs in

the months of July and August frommonsoon. Both summer and

winter rainfall causes landslides in the study region. The total

area of the district is 258.96 km2, out of which 16.82% is

cultivated, while the rest (83.18%) is uncultivated including

40.14% under forest cover dominated by softwood coniferous

forest. In the study area, agriculture is a major revenue-

generating activity carried out in terraced fields which largely

depends on rainfall, whereas only 2% of the cultivated area is

irrigated (GOP, 1998). The study area consists of rugged

topographic terrain where the elevation varies from 879 m to

4,394 m. According to the 2017 population census, the total

population of the valley was 115,711 persons, with an average

household size of 8.3 persons. The population density in the

valley was 446.8 person/sq. km according to the 2017 census.

The study area falls in the active seismic zone of the HKH

region. The USGS earthquake catalog reported 499 earthquakes

of ≥4.5 magnitude during 1973–2019 in the HKH region of

Pakistan (Figure 2). The study area consists of young mountain

FIGURE 2
Shahpur valley and surroundings: spatial distribution of earthquake events.
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systems that have immature geology (Jehan and Ahmad, 2006)

which are prone to landslides and often result in considerable

property damage and human losses. The probabilities of these

losses are expected to increase due to increasing population

pressure on these prone slopes, anthropogenic activities,

deforestation, and increasing rainfall intensity. Population

growth has posed more pressure on fragile slopes and has

made them more vulnerable to landslides.

Materials and methods

Data

The data were collected through primary and secondary sources

to meet the required objectives of the study. As a mandatory part of

the study, the sites of previous landslides were identified and

mapped on the SPOT5 image with a 2.5 m resolution in April

2013, and to reconfirm the ambiguous sites, consecutive field visits

were also conducted to validate the landslide sites on the ground.

The landslide contributing factors were selected based on previous

literature combined with local community knowledge regarding the

factors that contribute to or cause landslides. Thus, seven landslide

contributing factors, namely, surface geology, proximity to fault

lines, slope gradient and aspect, land use, and proximity to roads

and streams were selected. Surface geology and tectonic formation

determine the rock permeability and strength that ultimately

influence slope stability. Similarly, the slope gradient has a direct

relationship with landslides as more landslides occur at higher

slopes, while the slope aspect has an indirect relationship with

landslide occurrence (Khan et al., 2011). Thick vegetation bounces

back the initiation of landslides, while vegetation-free land leads to

erosion of soil and slope instability. The construction of roads over

fragile slopes and stream lateral erosion also encourage slope

instability (Zhou Z. et al., 2021); therefore, all these seven

landslide contributing factors were selected for landslide

susceptibility assessment.

Spatial data of the aforementioned contributing factors

were acquired from various sources. The surface geology and

tectonics data were traced and extracted from the Geological map

of north Pakistan. The vector geodatabase of settlement and

administrative units was obtained from the Survey of Pakistan.

The shapefiles of the road network were acquired from the

Communication and Works Department, Peshawar (Table 1).

Similarly, the land use map was derived from a SPOT satellite

image through a supervised classification algorithm in ArcGIS

10.2 (Table 1). The stream network, slope gradient, and slope

aspect maps were derived from the ASTER 30 m Global Digital

Elevation Model (GDEM).

Inventory of landslides

The past landslide sites were mapped on a multispectral

satellite image of SPOT (Figure 3A). These sites were verified

through a series of field visits. About 300 landslides of varying

sizes were marked on the satellite image, and almost 50% of the

total landslides were randomly verified through field

investigation. Among these landslides, 50% were debris flow

and debris slides, while the remaining 40% consisted of

mudflow and mudslide (Figure 3B). Only 10% among these

landslides were rockfall and rockslide. The debris flow and

debris slide mostly occur in the rainy season along the terrace

agricultural field, unstable slopes along roads, and streams

flowing on steep slopes in the study area. The debris flow and

debris slides were also observed in the high snow-melting areas.

Rockfall and rockslides were observed along fault lines in steep

slope areas. According to the local people, rockfall and rockslides

mostly occur during earthquakes in the study region. The

mapped landslides were randomly divided into 75 and 25% as

training and validation landslides, respectively (Figure 3A).

These landslides were then rasterized to find out the pixel

number in all classes of each contributing factor map to

calculate the weight values for IV and WoE models.

TABLE 1 Dataset used in the study and source of data.

Data type Acquired from Acquisition
date

Spatial resolution

Land use and existing landslide layers were obtained from SPOT
5 satellite image

SUPARCO Pakistan 4/11/2013 10 m multispectral and 2.5 m
panchromatic

Surface geology and fault lines were digitized from the geological
map of north Pakistan

Geological Survey of Pakistan 3/15/2013 —

Slope gradient, slope aspect, and river/stream were derived from
ASTER Global Digital Elevation Model V003

https://search.earthdata.nasa.gov/ 3/12/2013 30 m

Settlement and administrative unit data Survey of Pakistan 5/5/2013 —

Road network data Communication and Works Department,
Peshawar, Khyber Pakhtunkhwa

5/10/2013 —
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Weight of evidence model

Bonham-Carter (1989) applied the weight of evidence model

for the first time using Eq. 1 and Eq. 2:

W+ � ln
P(BD)
P(B�D). (1)

W− � ln
P( �B

D)
P( �B

�D). (2)

In the abovementioned equations, the probability is denoted

by P, while ln denotes natural log. B and �B, respectively, represent

the existence or non-existence of potential landslide evidence

factors. Likewise, D and �D denote landslide presence and

absence, respectively. Eqs 1 and 2 were modified to calculate

the weight of the classes of each causal factor contributing to

landslide occurrence and statistically derived using Eq. 3 and Eq. 4.

W+ � ln{( [Npix1][Npix1] + [Npix2])/( [Npix3][Npix3] + [Npix4])}.
(3)

W− � ln{( [Npix3][Npix1] + [Npix2])/( [Npix4][Npix3] + [Npix4])}.
(4)

Npix1 are the pixels that express the existence of landslides

and contributing factors; Npix2 denotes the existence of

landslides and absence of contributing factors, while Npix3

denotes the existence of contributing factors and non-

existence of landslides. Similarly, Npix4 shows the pixels

where both landslides and landslide contributing factors are

not found. Wc is the final weight which is calculated using

Eq. 5:

Wc � (W+) − (W−). (5)

FIGURE 3
Shahpur valley: (A) distribution of past landslides and (B) types of landslides.
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Wc represents the spatial association of landslides and

contributing factors.

Information value (IV) model

Measuring the effect of landslide contributing factors on

landslide occurrence was also examined using the IV model.

The information value model is based on Bayes’ theorem, and

information values are derived from each class of contributing

factors. The IV model calculates landslide susceptibility based on

past landslide events and its correlation with landslide

contributing factors. The positive information value of a class

shows a stronger correlation with landslide occurrence, while the

negative value denotes a negative correlation of that class with

landslides. In the IVmodel, the statistical values are calculated for

all classes of each contributing factor using Eq. 6:

IV � log
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ Npix(Si)/Npix(Ni)∑Npix(Si)/∑Npix(Ni)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (6)

where Npix(Si) denotes the landslide pixels in class i, whereas

Npix(Ni) is the total pixels of class i. Similarly, ∑Npix(Si) is the
landslide pixels in the entire study region, whereas ∑Npix(Ni)
denotes the total pixels in the study region.

Landslide susceptibility index (LSI)

The LSI for both IV and WoE models was calculated using

the sum of the landslide causal/contributing factors in the GIS

based on the Wc and IV values for overlay analysis in ArcGIS

using the following equations:

LSIWoE � ∑Wc, (7)
LSIIV � ∑ IV, (8)

where∑Wc denotes the total derived weight of WoE and∑ IV is

the derived weight of the information value model.

Validation techniques

The success rate curve, prediction rate curve, R-index, and

seed cell area index (SCAI) were used to validate the LSI maps

prepared based on WoE and IV models. The success rate curve

validation is based on training landslides which is 75% of the total

landslides, while the prediction rate curve is based on validation

landslides which is 25% of the total landslides. Both curves

elucidate the accuracy of WoE and IV for selected causal

factors to landslide occurrences. The validation curves for

WoE and IV were calculated using the LSI values overlaid

with the existing layer of landslide area using the geo-

statistical tool in the GIS. Cumulative percentages for both

susceptibility class and landslide area were calculated, and

susceptibility class was plotted on the x-axis and landslide

area on the y-axis to generate both success and prediction rate

curves. The landslide model performance was assessed using

specificity, sensitivity, and accuracy. Sensitivity is the proportion

of pixels that have been accurately classified as occurrences of

landslides, whereas the proportion of pixels of non-landslide

pixels that are accurately classified as non-landslides is the

specificity (Abedi Gheshlaghi and Feizizadeh, 2021) and

accuracy is the proportion of landslides and non-landslide

pixels that are accurately classified (Chen et al., 2018).

Sensitivity � TP

TN + FN
. (9)

Specificity � TN

TN + FP
. (10)

Accuracy � TP + TN

TP + TN + FP + FN
. (11)

In the equations, TN is the true-negative, TP is the true-

positive, FN is the false-negative, and FP is the false-positive

(Abedi Gheshlaghi and Feizizadeh, 2021).

The SCAI technique was applied on both WoE and IV

models as first tested by Süzen and Doyuran (2004). SCAI is

the ratio of the percentage of the pixels of a landslide

susceptibility zone to the percentage of existing landslide

pixels in that susceptibility zone. The model is considered

excellent if the value of the SCAI decreases from a very low to

a very high LS class (Arabameri et al., 2020; Pawluszek-Filipiak

et al., 2020). The SCAI is calculated using the following equation:

SCAI � Ni%
ni%

. (12)

In addition, the relative landslide density (R-index) was also

used to validate the LSI maps. R-index is calculated using the

following equation:

R − Index � ⎛⎝ ni

Ni/∑ ni

Ni

⎞⎠ × 100, (13)

where ni is the number of landslides in a LS zone and Ni is the

total number of pixels in a LS zone.

Landslide vulnerability assessment

Vulnerability is the essential element of risk assessment which

refers to the potential degree of loss to the element at risk (Ram and

Gupta, 2022). According to the definition of UNISDR (2009),

vulnerability is “the characteristics and circumstances of a

community, system, or asset that make it susceptible to the

damaging effects of a hazard.” The calculation of social, economic,

and environmental vulnerability is still a challenge in landslide studies
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(Fu et al., 2020); therefore, the physical vulnerability was assessed

based on elements at risk exposure level and the probability of loss

due to landslide. Based on indigenous knowledge and expert

opinions, the agricultural land, settlement, rangeland, forest,

schools, roads, and bridges were selected as elements at risk for

vulnerability assessment. Based on the element at risk, the exposure

maps were prepared using the landslide susceptibility map to

measure the level of exposure of these elements at risk. These

exposure maps were used to calculate to prepare the vulnerability

map of the area using a geo-statistical approach based on Eq. 14.

V � P(D), (14)

where P is the probability of loss due to landslides and D is the

element at risk. From the knowledge gained during fieldwork, the

value of each element at risk was then used for calculation of the

probability of loss which is expressed on a scale of 0 to 1, where

zero means no loss while 1 is the total loss. The final map was

reclassified into five zones ranging from very low- to very high-

vulnerability zones.

Landslide risk assessment

The function of hazard (likelihood of landslide occurrence) and

damage potential is called risk (Anbalagan and Singh, 1996; Sujatha

and Rajamanickam, 2015). Risk is defined as the potential for adverse

consequences or the chances of loss (Lee and Jones, 2004). UNISDR

(2009) defines risk as “the combination of the probability of an event

and its negative consequences.” In this study, risk assessment is

calculated based on damage potential to the elements at risk

which we have named vulnerability (Ram and Gupta, 2022).

In this study, landslide risk is calculated using the following

equation:

R � H × V, (15)
where R is the potential risk, H is the hazard probability

(landslide susceptibility), and V is the calculated vulnerability

(damage potential to the elements at risk). In the study region,

the unavailability of temporal records of landslides is the

limitation of the study; therefore, we have used the likelihood

FIGURE 4
Shahpur valley, the calculated weight of each class of causal factors.
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FIGURE 5
Shahpur valley: (A) surface geology; (B) proximity to fault lines; (C) slope gradient; (D) slope aspect; (E) land use/land cover; (F) proximity to road;
(G) proximity to stream/torrent (Rahman et al., 2017).
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TABLE 2 Shahpur valley: the calculated weight of each class of causal factors.

Class Npix
(Si)

%a ge
of Npix
(Si)

Npix
(Ni)

% age
of Npix
(Ni)

W+ W− Wc IV (W)

Surface geology

Alluvium 995 15.43 290137 11.20 0.32 −0.05 0.37 0.04

Greenschist melange 826 12.81 165892 6.40 0.70 −0.07 0.77 0.20

Jabrai granite gneiss 903 14.00 497979 19.22 −0.32 0.06 −0.38 −0.24

Alpuraicalc-mica-garnet schist 945 14.65 235014 9.07 0.48 −0.06 0.54 0.11

Karora group 957 14.84 501955 19.37 −0.27 0.05 −0.32 −0.21

Besham group 933 14.47 441986 17.06 −0.17 0.03 −0.20 −0.17

Manglaur formation 615 9.53 378895 14.62 −0.43 0.06 −0.49 −0.28

Darwaza Sar potassic granite gneiss 273 4.23 43693 1.69 0.92 -0.03 0.95 0.30

Jijal ultramafic 3 0.05 35939 1.39 −3.40 0.01 −3.41 −1.57

Fault line buffer (m)

0–250 2933 45.47 448304 17.30 0.97 −0.42 1.39 0.32

251–500 1820 28.22 409420 15.80 0.58 −0.16 0.74 0.15

501–1000 763 11.83 676634 26.11 −0.79 0.18 −0.97 −0.44

>1000 934 14.48 1057133 40.79 −1.04 0.37 −1.41 −0.55

Slope gradient

0–5° 93 1.44 67722 2.61 −0.60 0.01 −0.61 −0.36

6–15° 506 7.84 261492 10.09 −0.25 0.02 −0.28 −0.21

16–30° 1624 25.18 668931 25.81 −0.02 0.01 −0.03 −0.11

31–45° 3747 58.09 1366442 52.73 0.10 −0.12 0.22 0.06

>46° 480 7.44 226903 8.76 −0.16 0.01 −0.18 −0.17

Slope aspect

Flat 1 0.02 1004 0.04 −0.92 0.00 −0.92 −0.50

North 503 7.80 214667 8.28 −0.06 0.01 −0.07 −0.12

Northeast 531 8.23 284530 10.98 −0.29 0.03 −0.32 −0.22

East 1029 15.95 387999 14.97 0.06 −0.01 0.08 0.07

Southeast 781 12.11 395492 15.26 −0.23 0.04 −0.27 0.02

South 1075 16.67 366954 14.16 0.16 −0.03 0.19 0.10

Southwest 1003 15.55 356943 13.77 0.12 −0.02 0.14 0.08

West 819 12.70 317383 12.25 0.04 −0.01 0.04 0.05

Northwest 708 10.98 266520 10.28 0.07 −0.01 0.07 −0.07

Land cover

Range land 1007 15.61 847632 32.71 −0.74 0.23 −0.97 −0.42

Forest 1621 25.13 1036194 39.98 −0.47 0.22 −0.69 −0.30

Glacier and snow 0 0.00 111086 4.29 0.00 0.00 0.00 0.00

Agriculture land 100 1.55 416925 16.09 −2.34 0.16 −2.50 −1.11

Settlement 0 0.00 37521 1.45 0.00 0.00 0.00 0.00

Barren land 3722 57.71 87880 3.39 2.87 −0.83 3.70 1.13

Stream/torrent 0 0.00 54252 2.09 0.00 0.02 0.00 0.00

(Continued on following page)
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of landslide occurrence instead of landslide hazard which might

possess some degree of uncertainty in risk assessment.

Results

Landslide causative factors and landslide
occurrence

Surface geology
The relationship between surface geology and landslide

occurrence was assessed using WoE and IV models. The types of

surface geology are shown in Figure 4A. The highest positive Wc

weight was found in Darwaza Sar Potassic Granite Gneiss (0.95) and

Greenschist Melange (0.77) (Figure 5 and Table 2). Both classes have

a very positive correlation with landslides as assessed in WoE model

results. In the study area, Darwaza Sar Potassic Gneiss and

Greenschist Melange are metamorphic rocks located in a seismo-

tectonically active zone and therefore bear a high potential for slope

failure. Similar results were found in the IV model results. In both

WoE and IV models, the highest negative correlation was found in

Jijal Ultramafics, where the Wc value was −3.41, while the IV(W)

was −1.57 (Table 2). Ultramafic are igneous rocks having low silica

content and heavily comprise mafic minerals and therefore resist

weathering and registered a highly negative correlation to landslide

occurrence in the results of both the models.

Proximity to fault line
The occurrence of landslides has a strong correlation with

fault lines (Korup, 2004; Rahman et al., 2019). The existence of

fault lines at high slope gradients provides favorable settings for

the occurrence of slope failure. There is a complex tectonic

structure in the study area which is considered a causal factor

for slope instability. It is evident from the analysis that the

tectonic structures have a major role in landslide occurrence.

The highest positive Wc value (1.39) was in the buffer zone of

0–250 m followed by the 251–500 m buffer zone according to the

WoE model. Similarly, the IV model also showed the highest

landslide probability in the buffer zone 0–250 m followed by the

251–500 m buffer zone. The buffer zones

501–1,000 and >1,000 m showed a negative correlation with

landslide occurrence in both WoE and IV models (Figure 5

and Table 2). Thus, it is evident from the results of both models

that landslides occur in the vicinity of fault lines.

Slope gradient
The slope gradient affects the population distribution, their

activities, and natural resource distribution. Likewise, slope

gradient has a close association with landslide distribution,

and it acts as a governing factor in slope stability as the

chances of landslide incidence escalate with the increase in

slope gradient. It was observed during field visits that a high

number of landslides occurred on the slope along the road and

stream where the lateral cutting was a dominant factor. The map

of the slope gradient for the study area was generated in the GIS

from ASTER-GDEM having a 30 m spatial resolution

(Figure 4C). The analysis of both WoE and IV shows that the

slope failure is higher in 31–45° slopes as the highest Wc value

(0.22) and IV value (0.06) was found in this class of slope gradient

(Figure 5 and Table 2), while the slope gradient 0–5° and 6–15°

TABLE 2 (Continued) Shahpur valley: the calculated weight of each class of causal factors.

Class Npix
(Si)

%a ge
of Npix
(Si)

Npix
(Ni)

% age
of Npix
(Ni)

W+ W− Wc IV (W)

Road buffer (m)

0–100 1169 18.12 130869 5.05 1.28 −0.15 1.43 0.46

101–200 1041 16.14 103117 3.98 1.41 −0.14 1.54 0.51

201–300 991 15.36 92441 3.57 1.47 −0.13 1.60 0.54

301–400 541 8.39 85731 3.31 0.93 −0.05 0.99 0.31

>400 2708 41.98 2179333 84.10 −0.70 1.30 −2.00 −0.40

Stream buffer (m)

0–100 1318 20.43 294902 11.38 0.59 −0.11 0.70 0.16

101–200 955 14.81 265711 10.25 0.37 −0.05 0.42 0.06

201–300 821 12.73 255277 9.85 0.26 −0.03 0.29 0.01

301–400 799 12.39 247979 9.57 0.26 −0.03 0.29 0.01

401–500 395 6.12 238952 9.22 −0.41 0.03 −0.44 −0.28

>500 2162 33.52 1288669 49.73 −0.40 0.28 −0.68 −0.27
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class showed the highest negative correlation with landslides in

both model results as both the slope ranges, to some extent,

consist of flat land where a low possibility of slope failure is

expected.

Slope aspect
Slope direction governed sunlight intensity and duration,

determining the amount of rainfall, moisture-holding capacity of

land, and distribution of vegetation. The analysis revealed that

the south-facing slope has the highest value of Wc (0.19) and IV

(0.10) followed by the southwest facing slope Wc (0.14) and IV

(0.08) as shown in Figure 5 and Table 2. The high value ofWc and

IV in south-facing slopes denotes that there is a high number of

landslides that occurs, which might be because of exposure to

more sunlight and ample amount of rainfall. High amounts and

more intense rainfall in the summer monsoon causes more rain-

FIGURE 6
Shahpur valley: (A) WoE-based landslide susceptibility zones and (B) IV-based landslide susceptibility zones.
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induced land sliding. Similarly, during the winter season, the

topsoil and porous rocks absorb more water from the

accumulated snow on these slopes. Therefore, it often

accelerates the saturation of ground and thus causes

landsliding. This may be attributed to the low vegetation on

south and southwest-facing slopes as compared to north and

northeastern-facing slopes where vegetation cover was found to

be high during field visits.

Land use/land cover
The forest cover protects the mountainous slope from

weathering and mass wasting processes as the roots hold the

underneath soil and keep the slope stable. Increasing population

growth has increased the demand for wood and land for food, which

has disturbed the slope of almost all the mountainous regions of the

world and has led to slope instability. The land use map of the study

area shows seven different land cover types, that is, rangeland, forest,

glacier and snow, agricultural land, settlement, barren land, and

stream/torrent (Figure 4E). The statistical weight for land use classes

was derived using WoE and IV models. The highest weight of both

WoE (Wc � 3.70) and IV (1.13) was found in the barren land class

(Figure 5 and Table 2). As barren land is exposed to a variety of

erosional and mass wasting processes, it is highly prone to the

likelihood of landslide occurrence. The highest negative landslide

correlation was found in the agricultural land where the WoE value

was −2.50 and the IV value was −1.11; although in the study area,

terrace agriculture is practised, the local community has constructed

protection walls around the field.

Proximity to road
Road constructions often disturb the slopes and expedite the

weathering and mass wasting processes, thus increasing the

probability of landslide occurrences. It also provides means of

accessibility and accelerates the process of deforestation in

mountainous regions. In the current study, proximity to the

road is used as a contributing factor of landslide hazard. The

results show a high positive correlation with proximity to the

road, especially the distance from the road up to 300 m. The

highest Wc value (1.60) and IV (0.54) were found in 201–300 m

of road proximity (Figure 5 and Table 2). Similarly, the area that

ranges from 101 to 200 m away from the roads has the second

highest positive correlation toward landslide probability, while

the areas >400 m away from the roads recorded the highest

negative correlation with landslide occurrence. The construction

of roads in mountainous areas usually destabilizes the nearby

fragile slope (Khan et al., 2011). Often, shallow landslides occur

along the roads mainly in rainy seasons, and these landslides are

initiated due to edge cutting and the use of explosive material

during road construction on these slopes (Pourghasemi et al.,

2020). Therefore, the density of landslides was found to be high

FIGURE 7
Shahpur valley: (A) success rate curve and (B) prediction rate
curve, showing the prediction capability of WoE and IV models.

TABLE 3 Areal coverage of landslide susceptibility zones.

Susceptibility class WoE IV

Area (Km2) Percentage Area (Km2) Percentage

Very low/no 80.53 31.21 71.35 27.65

Low 61.41 23.80 85.77 33.24

Moderate 32.65 12.66 30.16 11.69

High 46.03 17.84 37.58 14.57

Very high 37.38 14.49 33.14 12.84
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near the roads, and the density of landslide decreases as the

distance from roads increases.

Proximity to stream/torrent
The relationship of stream/torrent with landslide was also

examined through WoE and IV statistical models. It was found

from the analysis that both WoE and IV have higher values near

the stream, which indicates high landslide probability in this

region. The highestWc (0.70) and IV values (0.16) were found in

the proximity of 0–100 m (Figure 5 and Table 2). The results

show that the region up to 400 m in proximity to the stream

recorded a positive correlation toward landslide probability. The

highest negative correlation was found in the buffer zone greater

than 500 m of stream in both models’ results. Steep slopes along

the stream and consistent lateral erosion destabilize the slopes

and cause landslides (Shano et al., 2021). In the study area, the

stream undercut the banks that result in sloughing and stimulate

slope failures. Therefore, the highest values in Wc and IV were

found in the proximity of the streams.

Landslide susceptibility zonation

Landslide is a commonmenace to property, human lives, and

infrastructure in Shahpur valley. For its mitigation, the first

important step is to identify susceptible landslide areas. In the

LSZ map, all the landslide causative factors were integrated into

the GIS, and the region was divided into very low- to very high-

susceptible zones based on their susceptibility level. To minimize

the subjectivity, quantitative weight to each class of factor maps

was applied based on WoE and IV models for the preparation of

the LSZ map of Shahpur valley. The LSZ map was created based

on both WoE and IV models by integrating all the relative

weights of all classes of factor maps.∑Wc denotes the sum of the Wc of all factor maps for the

WoE model, while ∑ IV is the sum of the IV model value of all

factor maps. In both models, the higher LSI means a high

probability of landslide incidents. Based on LSI, Figure 6

shows the landslide susceptibility level in the study area. The

WoEmodel predicted more areas as high (17.84%) and very high

(14.49%) landslide susceptible to landslide hazard as compared to

the IV model where the high landslide susceptible class covers

14.57 and 12.84% of the area in very high susceptibility zones

(Table 3). The landslide spatial distribution and the derived

susceptibility maps show that the selected causative factors are

relevant, and both the models accurately depicted the landslide-

susceptible areas. The existing landslide distribution in different

landslide susceptibility zones in Figure 6 shows more coherent

results in theWoE-derived susceptibility map as compared to the

landslide susceptibility map derived through the IV model

(Figure 6).

Validation of the landslide
susceptibility map

The result of both success and prediction rate curves has a

steep slope, which indicates significantly good results for both

WoE and IV models. The model validation from the success rate

curve shows 80.34% accuracy for WoE and 80.13% for the IV

model (Figure 7A). The area under the curve (AUC) was

calculated using a success rate curve based on the training

dataset. An AUC of 79.64% was recorded for WoE and

77.95% for the IV model (Figure 7A). The model’s prediction

rate curve was also calculated based on the validation dataset and

shown in Figure 6B. The calculated prediction rate for both WoE

and IV was 83.34 and 85.13%, respectively.

Based on the training dataset, the performance of the models,

that is, WoE and IV models has been assessed as shown in

Table 4. Both the models showed very good performance in the

classification of landslide pixels where the sensitivity for theWoE

was 86.36%, while it was 90.77% for the IV model (Table 4).

Similarly, the models showed the highest performance in the

classification of non-landslide pixels, where the WoE model

recorded 80.95% specificity, whereas the specificity of the IV

model was 80.47%. The highest accuracy is for the IV model

TABLE 4 Model performance using the training dataset.

Evaluation parameter Model

WoE IV

TP 114 118

TN 102 103

FP 24 25

FN 18 12

Sensitivity 86.36% 90.77%

Specificity 80.95% 80.47%

Accuracy 83.72% 85.66%

TABLE 5 Model performance using a validation dataset.

Evaluation parameter Model

WoE IV

TP 46 45

TN 39 41

FP 7 8

FN 6 4

Sensitivity 88.46% 91.84%

Specificity 84.78% 83.67%

Accuracy 86.73% 87.76%

Frontiers in Earth Science frontiersin.org14

Rahman et al. 10.3389/feart.2022.953627

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.953627


(85.66%), whereas the accuracy for the training dataset of the

WoE model is 83.72% (Table 4).

Likewise, in the training dataset, the performance of the

models was assessed using the validation dataset. The WoE and

IV models showed excellent performance in the classification of

landslide pixels. The sensitivity results for the WoE model are

88.46%, whereas it is 91.84% for the IV model (Table 5).

Similarly, both the models showed the highest performance

for non-landslide pixels classification, which recorded 84.78%

specificity forWoE and 83.67% for the IVmodel. The accuracy of

the WoE model is 86.73%, while the IV model’s accuracy is

87.76% (Table 5).

The results of the SCAI validation index are shown in

Table 6. It is evident from the previous literature that the

SCAI value should be lower in the higher LS zone and higher

in the lower LS zone, whereas the greater difference in SCAI

values of both LS zones (lower and higher LS zone) indicates a

good fit of the model (Arabameri et al., 2020; Saha and Saha,

2020). In the current study, the SCAI results for very high and

low landslide susceptibility classes in both WoE and IV

models show the same value range where the very low LS

zone has 2 and the very high LS zone has 0.43 SCAI value

(Table 6). This means that both models have almost similar

performance for landslide susceptibility mapping in the

Hindu Kush region.

In this research article, the susceptibility model results were also

validated through the R-index which is considered one of the

important validation techniques in landslide studies. The result

shows that the R-index value for high and very high LS zones

was 26.64 and 29.64%, respectively, in the WoE model, and it was

29.48 and 31.21% for the IV model, respectively (Figure 8). Both

landslide models have high accuracy and are suitable for similar

studies in the Hindu Kush region; however, based on the validation

results of all mentioned techniques, it was elucidated that the WoE

model gives slightly better results than the IV model.

Elements at risk and landslide vulnerability

In this study, elements at risk were assessed based on

indigenous knowledge and expert opinions, and these

included agriculture land, range land, settlements, road

network, bridges, and schools. The elements at risk are

studied in relation to landslide hazard (susceptibility) zones,

and their degree of exposure is explored through the GIS.

Each element at risk that falls in the high-susceptibility zone

was categorized into the highly exposed group, and similarly,

those lying in the low-susceptibility zone are categorized as low

exposure to landslide as one of the core characteristics of

TABLE 6 WoE and IV model result validation based on seed cell area index (SCAI).

Model Susceptibility zone No. of
pixels in
the susceptibility
zone

% No. of
landslide pixel

% SCAI

WoE Very Low 515414 31.20 754 15.60 2.00

Low 393019 23.80 630 13.00 1.82

Moderate 208960 12.70 746 15.50 0.82

High 294565 17.80 1070 22.20 0.80

Very High 239247 14.50 1628 33.70 0.43

IV Very Low 456638 27.65 669 13.86 2.00

Low 548936 33.24 1046 21.67 1.53

Moderate 193009 11.69 713 14.77 0.79

High 240528 14.57 943 19.53 0.75

Very High 212094 12.84 1457 30.18 0.43

FIGURE 8
R-index of LS zones for WoE and IV models.
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FIGURE 9
Shahpur valley. (A) Agriculture land exposure to the likelihood of landslide occurrence. (B) Settlement exposure to the likelihood of landslide
occurrence. (C) Rangeland exposures to the likelihood of landslide occurrence. (D) Forest cover exposures to the likelihood of landslide occurrence.
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vulnerability is the ability to see the conditions of exposed

elements or communities at risk.

In Shahpur valley, agriculture is the mainstay of the economy, a

source of foodstuff, and a major economic activity in the low-lying

areas. In Shahpur valley, agriculture land occupied 42.22 sq km,

which is 16.3% of the total study area. The local people practice

agriculture in the low-lying areas, specifically in the vicinity of rivers

or streams, and mostly gentle slopes are dominated by terrace

farming. It was found from the results that 37.6% of the total

agriculture land is highly exposed to the likelihood of landslide

occurrence (Figure 9A). Landslide is a major threat to the

agriculture sector and to the people engaged in agriculture

activities. About 52.2% of agriculture land is moderately exposed,

and only 10.2% of agriculture land is in the category of low exposure

to the likelihood of landslide occurrence.

In the Hindu Kush region, the pace of population growth is

higher than the national average (Rahman and Shaw, 2015). This

tremendous population growth has increased pressure on the

available natural and land resources. With the population growth,

demand for food, shelter, communication network, and other

requirements also increases. In the areas like Shahpur valley, the

people have no choice other than engulfing forest and rangeland to

construct shelter for their living and clear the area for agriculture to

gain food self-sufficiency. Such situations have accelerated the

likelihood of landslide occurrence and vulnerability in the whole

Shahpur valley. Settlements taken into consideration as elements at

risk include housing units and commercial areas such as shops.

People living in these settlements and their vulnerability depend on

the location of settlements: either they are situated in hazard-free

zone or in hazard-prone areas. Based on the analysis results, about

18.3% of the area under settlements is highly exposed to the

likelihood of landslide occurrence, and these settlements are

highly vulnerable to any unusual landslide event (Figure 9B).

About 66.2% of settlements are moderately exposed to the

likelihood of landslide occurrence and have comparatively low

vulnerability, while 15.5% of settlements have low exposure to the

likelihood of landslide occurrence.

In Shahpur valley, rangelands are present at higher altitudes and

are mainly dominated by grasses, shrubs, and bushes. Such lands are

very suitable for watershed management and mainly utilized for

FIGURE 10
Shahpur valley. (A) School exposure to the likelihood of landslide occurrence. (B) Roads and bridge exposure to the likelihood of landslide
occurrence.
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grazing and livestock ranching. These rangelands are the main

pastureland in Shahpur valley. The vegetation cover in these

rangelands protects soil erosion and discourages landslide

phenomena. In Shahpur valley, out of the total rangeland area,

13.6% was found highly exposed to the likelihood of landslide

occurrence and 25.67% area has low exposure, while the

rangeland moderately exposed to the likelihood of landslide

occurrence is 60.73% of the total area under rangeland (Figure 9C).

Forest is an important resource for the local people and

contributes equally to the country’s economy. Forest provides

timber for house construction and wood for cooking and heating

in winter to protect from harsh cold winter. Forest cover is a

bioengineering solution for landslide hazards and soil erosion.

Forest helps in binding soil and protecting it from slope failure.

The study area has thick vegetation cover, particularly over the higher

altitudes and the slopes which receive an ample amount of

precipitation. At higher altitudes, the coniferous forest is

predominant. In landslide vulnerability analysis, it is also an

important indicator like agriculture land and human settlement,

but it works as a landslide mitigation strategy and its importance

cannot be denied. About 10% of the area under forest cover is highly

exposed to the likelihood of landslide occurrence (Figure 9D).Mostly,

the highly exposed areas are on the slope which is destabilized either

by a natural intervention such as earthquake, geological structure,

and lateral erosion by rivers and streams during floods or by human

intervention such as deforestation, clearing area for settlement

construction and agricultural activities, road construction, and

quarrying. Forest cover is basically a capacity to cope with the

landslide hazard phenomena, but unfortunately, due to the lack of

forest conservation, this precious resource is vanishing and, as a

result, vulnerability to landslide hazard is increasing.

Likewise, agriculture, settlements, forest and rangeland, and the

infrastructure including schools, bridges, and roads were also

analyzed for exposure to landslide hazard. Road and bridge data

were obtained from the Communication and Works Department,

Khyber Pakhtunkhwa, while the school data were obtained from the

Elementary and Secondary Education Department. The school data

consist of primary, middle, and high schools for both boys and girls.

In Shahpur Valley, there are a total of 120 schools. Out of total

schools, 42 were found in very high and high hazard zones, which

make up 35% of the total schools and have been categorized as highly

exposed to landslide hazard (Figure 10A).

In Shahpur valley, there is a total of 75 km road network in terms

of length, out of which 38 km falls in highly exposed landslide hazard

class (Figure 10B). Most of the highly exposed road section is in the

upper part of the valley. Roads in Shahpur valley mostly follow the

riverside, so the river lateral erosion and road construction itself pose a

serious threat, whereas human intervention over the natural slope

increases the vulnerability to landslide hazards. About 25 km road is

moderately exposed to landslide hazard. Likewise, bridges were also

analyzed for landslide exposure. According to the Communication

and Works Department, there are 10 bridges in the valley, out of

which three bridges are highly exposed to landslide hazard. Similarly,

six bridges are located in a moderately exposed area, and the

remaining one bridge is in the zone of low exposure to landslide

hazard (Figure 10B).

In the study area, agriculture and settlements have high

importance and were given a high vulnerability score based on

expert opinion, while the rangeland which is not that important

in terms of monetary benefits, given a moderate vulnerability score.

Thus, vulnerability zonation maps were produced through weighted

overlay analysis in the ArcGIS environment using the element at risk

layers. Figure 11 shows the different zones of vulnerability for

landslide hazard in Shahpur valley. The high and very high

vulnerability is mostly found in the lower parts of the valley,

while the upper parts of the valley mostly have low vulnerability.

The vulnerability variation in the upper and lower parts of the valley

is characterized by the variation in the population inhabiting the area

and agriculture activity carried out in the valley. Villages Kuz Kana,

Shahpur, Bar Kana, andKarshut have high vulnerability as compared

to other villages such as Ajmir, Ganshal, and Dheri Larri.

Landslide Risk

The likelihood of landslide occurrence and damage potential

to the elements at risk maps (vulnerability) were combined

through overlay analysis, and the final landslide risk map was

prepared. The risk map depicts the areas of high and low risk.

The areas that have low or moderate risk means that there is only

likelihood of landslide occurrence or damage potential to

elements at risk that exists, while both likelihoods of landslide

occurrence and damage potential to elements at risk are high,

categorized as high and very high landslide risk zones. According

to Figure 12, in Shahpur valley, 41.5% of the total area falls in

low-risk areas, while the majority (51%) of the area is in a

moderate landslide risk zone. The remaining 5.5% area is at

high risk, and 2% is in a very high landslide risk zone. In Shahpur

valley, while comparing Figure 12 with the land use, road

network, and other infrastructure, it was found that most of

the agriculture land, settlements, and road network are located in

high and very high landslide risk zones. It was found that 10% of

the total agriculture land is in a very high landslide risk area and

another 22.75% is at high risk of landslide hazard. This is an

alarming issue for the agriculture sector, and similarly, in

Shahpur valley, enormous damages could occur to this sector

if proper mitigation measures are not taken into consideration.

Discussion

This study focused on landslide susceptibility using WoE

and IV models, assessed elements at risk exposure to landslide

hazard (susceptibility), assessed vulnerability based on

exposure to hazard and probability of loss, and prepared the

landslide risk map based on the function of hazard and
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vulnerability. Due to unavailability of spatio-temporal landslide

inventory in Pakistan and especially in the study region, the

inventory of the existing landslide was prepared using high-

resolution remote sensing images and verified with extensive

field visits. The existing landslides were mapped on the image

using polygons. In landslide susceptibility and hazard mapping,

polygon data are more effective and reliable than point data

(Pourghasemi et al., 2020). In the current study, seven landslide

causative factors were selected based on indigenous people’s

knowledge and studied literature (Khan et al., 2011; Khan et al.,

2019; Rahman et al., 2019; Moazzam et al., 2020; Abdı et al.,

2021). The relationship between landslide causative factors and

landslide occurrences was investigated based on WoE and IV

models as shown in Table 2. It is evident from the results of this

study that land cover, geology, proximity to roads, and

proximity to fault lines have high Ŵc value and IV values. It

is, therefore, concluded that these factors are more contributing

in landslide occurrences, and the same has been observed in

other studies (Moazzam et al., 2017; Bacha et al., 2018; Rahim

et al., 2018). Moreover, the land cover parameter, the barren

land, was found highly susceptible to landslide occurrence as

this class is more exposed to erosional and mass wasting

processes (Mohammady et al., 2012). Similarly, the geology

parameters, Darwaza Sar Potassic Gneiss and Greenschist

Melange, are found in the seismic-tectonically active zone

and therefore bear a high potential for slope failure.

FIGURE 11
Shahpur valley: vulnerability zonation.
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Moreover, it is observed from Table 2 that the influence of

landslide occurrence decreases with an increase in distance

from the roads and streams, and the same has been observed in

other similar studies (Regmi et al., 2014; Rahman et al., 2017;

Bacha et al., 2018). The construction of roads and stream lateral

erosion destabilized the nearby slopes and caused landslides.

Earthquake and rainfall are the major landslide causative

factors, but due to the unavailability of landslide data

associated with both these parameters, we could not use

these variables in landslide susceptibility mapping.

The derived susceptibility maps were validated using success

and prediction rate curves using training and validation landslides

for both curves, respectively. Both curves showed high accuracy for

both WoE and IV models, and the results are in line with other

studies (Pradhan et al., 2010; Regmi et al., 2014). Both models

(WoE and IV) showed excellent performance in sensitivity,

specificity, and accuracy results based on both training and

validation datasets as shown in Tables 4 and 5, and similar

results have been observed in some previous studies (Abdı et al.,

2021; Abedi Gheshlaghi and Feizizadeh, 2021). Furthermore, the

susceptibility maps derived based on WoE and IV models were

validated using the SCAI validation index, and the results showed a

good fit for the models, which are in line with other studies

(Arabameri et al., 2020; Saha and Saha, 2020).

FIGURE 12
Shahpur valley: landslide risk.
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In this study, exposure to landslide hazard (susceptibility) was

assessed using agricultural land, range land, human settlements,

roads, bridges, and school data as elements at risk which were

selected based on indigenous people’s knowledge and expert

opinions. Exposure of elements at risk is one of the core

characteristics of vulnerability assessment (Shahabi and Hashim,

2015; Singh et al., 2021). It is difficult to assess social, economic,

and environmental vulnerability in a region of scarce data availability;

therefore, we just focused on the physical vulnerability of the

elements at risk in this study. In the Hindu Kush region, the pace

of population growth is higher than the national average (Rahman

and Shaw, 2015). This tremendous population growth has increased

pressure on the available natural and land resources, which ultimately

increased the demand for food, shelter, communication network, and

other necessities. In the areas like Shahpur valley, the people have no

choice other than engulfing forest and range land to construct shelter

for their living and clear the area for agriculture to gain food self-

sufficiency. Such situations have accelerated the landslide hazard and

vulnerability in the whole Shahpur valley. In the valley, 37.6% of the

total agriculture land is highly exposed to landslide hazards

(Figure 9A), while 18.3% of settlements are highly exposed to

landslides (Figure 9B). Landslides deposit debris on prime

agricultural land or remove the productive soil (Nguyen and Kim,

2021). From thefieldwork, it was deduced thatmost of the agriculture

is in practiced on greater than 30° slopes due to limited land

availability in lower areas. Furthermore, heavy landsliding was

observed in heavily grazed and cultivated areas. The forest and

natural vegetation clearance for agricultural practices as well as for

wood used as a fuel and construction have increased vulnerability in

the study region.More than 50%of the road sections in the study area

are facing the continuous threat of landslide (Figure 10B). The areas

with high population and agricultural practices were found in the

highly vulnerable zone (Figure 11). Out of the total study area, 7.5%

of the area was found in a high to very high-risk zone where 32% of

agriculture is in practice. Evading and reducing the impacts of

landslide hazards is possible with education and awareness of

people of the community, looking to the history of the hazard to

avoid such prone areas. Land use planning, policies, and regulation

implementation through local government can reduce the risk of

such hazards, and government intervention in this regard has been

observed by Almeida et al. (2017).

Conclusion

The WoE and IV models were applied to develop landslide

susceptibility maps in this study. Initially, past landslides were marked

on the SPOT5 satellite image, validated with consecutive field visits,

and then plotted on amap. Landslide causal factors identified through

literature review and from indigenous people’s knowledge were

surface geology, fault lines, land cover, slope gradient and aspect,

and distance from streams and roads. The maps of these factors were

prepared for susceptibility analysis. The roles of each class of these

factor maps in landslide occurrence were analyzed, and assigned

weights were calculated by implementing Bayesian probability

models, that is, the weight of evidence and information value. The

required susceptibility maps were generated using ∑Wc and ∑ IV

values through overlay analysis in the GIS.

The LSI maps were prepared based on both models and then

validated using the success and prediction rate curves, SCAI, and

R-index techniques. The results concluded that the very high

landslide susceptibility zone covers 14.49% of the area

according to the WoE model and 12.84% of the area in the IV

model. Similarly, the area covered by the high-susceptibility zone

was 17.84 and 14.57% in WoE and IV models, respectively. The

validation results of all applied techniques showed better

performance of both the models in the study region. Based on

elements at risk, the landslide vulnerability map was generated

which showed a high vulnerability to the likelihood of landslide

occurrence in the lower parts of the valley. Similarly, the likelihood

of landslide occurrence and vulnerability maps were combined,

and the risk map of the study area was generated. According to the

landslide risk map, 5.5% of the study area was under high risk

while 2% of the area was in the very high-risk zone. The availability

of temporal landslide records in the study region is the main

hindrance in the preparation of landslide hazard and riskmapping.

Extensive fieldwork in similar mountainous terrain is another

hindrance in the preparation of social and economic landslide

vulnerability maps. This study provides a base for disaster

management authorities to develop location-specific mitigation

measures for landslide hazards to avoid human losses and

infrastructural damages in the future. The study concludes that

landslide hazards in the region may have negative impacts on

agricultural activities, natural ecosystems, river morphology,

human lives, and infrastructure in future. In this regard, proper

land use planning and strict forest preservation measures are

highly required to reduce the environmental and socio-

economic damages from landslide hazards.
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