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Abstract 

 
In this present work, we investigated the Global Stability Analysis of Corona virus disease model formulated 

by Atokolo et al in [11]. The COVID‑19 pandemic, also known as the coronavirus pandemic, is an ongoing 

pandemic that is ravaging the whole world. By constructing a Lyapunov function, we investigated the 

stability of the model Endemic Equilibrium state to be globally asymptotically stable. This results 

epidemiologically implies that the COVID-19 will invade the population in respective of the initial conditions 

(population) considered. 
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1 Introduction 
 
Corona virus popularly known as (COVID-19) is an ongoing pandemic disease caused by severe acute 

respiratory syndrome Coronavirus 2, [1,2]. The disease was first discovered in Wuhan, China in December 2019 

[2] and was declared to be a public health emergency of international concern on the 30th January, 2020 and 

was identified  as a global  pandemic by the World Health Organization(WHO) on the 11th March, 2020 [3,4]. 

1.94 million Cases were reported as of 14th April, 2020 in over 210 countries of the world, leading to over 

121,000 deaths with at least 465,000 recoveries including Nigeria [5,6,7]. 
 

Fever, cough, shortness of breath, pneumonia and acute respiratory distress syndrome were identified as 

possible symptoms of corona virus, [8,9]. The disease has an incubation period of 2-14 days [10]. The virus 

majorly is contracted during close contact with infected person and also by small droplets produced in the 

process of sneezing, talking and coughing, [2]. In this present work, we extend the work of Atokolo et al. in [11] 

by conducting a Global Stability Analysis (GAS) on the  Corona virus model. 
 

The concept of global stability is concerned with global properties of a model which can be investigated using 

Lyapunov function theory. Lyapunov gave a technique that can show if an equilibrium state is stable or unstable 

through the construction of a Lyapunov function. Lyapunov functions are positive functions that reduce in time 

along the orbits of a model. The method is advantageous because it sometimes proves stability of a non 

hyperbolic equilibrium, [12], however, there is no direct method of constructing a Lyapunov functions. 
 

An equilibrium state is asymptotically stable globally if its property holds globally and its domain of attraction 

is the entire space, [12]. Models such as the ones in [12,13,14], are veritable tools towards studying global 

stabilities of biological models. where Lyapunov functions were constructed to perform stability analysis on 

their models.  
 

2 Model Formulation and Procedures 
 
The following assumptions were given by Atokolo et al. in [11]. In modelling the spread of the disease 

(COVID’19) pandemic. 
 

i. The model incorporates a net inflow of individuals into the susceptible population. This parameter 

comprises of new births, immigration and emigration. 

ii. All classes of the population die naturally. 

iii. Disease induced death is considered in the model. 

iv. Infected individuals can recover naturally though the rate is assumed to be minimal. 

v. The Recovered has permanent immunity for re-infection. 

vi. Every individual taken for treatment recovers at a high rate, that is to say the treatment is considered to 

be effective. 

vii. We divide the population into the Susceptible class (𝑆), the Exposed class (𝐸), Quarantine class (𝑄), 
Isolated class (𝐽), the Infected class (𝐼), the Infected but treated class (𝐼𝑇), and the Recovered class(𝑅). 

 

2.1 Mathematical model for the transmission and control of COVID-19 
 

The mathematical model that incorporates the above assumptions as given in [11] is given as:  
 

 
𝑑𝑆

𝑑𝑡
= ˄ − 𝛼(1 − 𝑥)𝑆 − 𝜇𝑆  

 
𝑑𝐸

𝑑𝑡
= 𝛼(1 − 𝑥)𝑆 − [𝜃(1 + 𝑦) + 𝛽 + 𝜇]𝐸                

  
𝑑𝑄

𝑑𝑡
= 𝜃(1 + 𝑦)𝐸 − (𝜂 + 𝜇)𝑄                                                                                                                 

  
𝑑𝐽

𝑑𝑡
= 𝜂𝑄 + ∅(1 + 𝑧)𝐼 − (𝜇 + 𝜎 + 𝑟 + 𝜌)𝐽                                                                                            (1) 

 
𝑑𝐼

𝑑𝑡
= 𝛽𝐸 − [∅(1 + 𝑍) + 𝜆 + 𝜎 + 𝜇]𝐼 

 
𝑑𝐼𝑇

𝑑𝑡
= 𝛾𝐽 − (𝜔 + 𝜇 + 𝜎)𝐼𝑇  

 
𝑑𝑅

𝑑𝑡
=  𝜆𝐼 + 𝜌𝐽 + 𝜔𝐼𝑇 − 𝜇𝑅 
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Where 𝛼 =
𝛼1𝐸+𝛼2𝑄+𝛼3𝐽+𝛼4𝐼+𝛼𝑆𝐼𝑇

𝑁
 

 

and 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1, 0 ≤ 𝑧 ≤ 1 

 

where  𝑥, 𝑦, 𝑧, are control parameters 

 

2.2 Model variables and parameters description  
 

Table 1. Model variables and description 
 

S/N Variables Description 

1. 𝑆 Susceptible Human  

2. 𝐸 Exposed Human ` 

3. 𝑄 Quarantined Human  

4. 𝐽 Isolated Human  

5. 𝐼 Infected Human  

6. 𝐼𝑇  Infected but treated Human  

7. 𝑅 Recovered Human  
 

Table 2. Model parameters and description 
 

S/N Parameters Description  

1  Recruitment rate  

2 𝛼 Force of infection  

3 𝜃 Rate at which the exposed are quarantine  

4  Rate at which the quarantined are isolated  

5 𝛽 Rate at which the exposed are infected  

6 ∅ Rate at which the infected are isolated  

7 𝛾 Treatment rate  

8 𝜌 Natural recovery rate of the isolated  

9 𝜆 Natural recovery rate of the infected  

10 𝜔 Recovery rate due to treatment  

11 𝜎 Disease induced death rate  

12 𝜇 Natural death rate  

13 𝑥 Enlightenment control measures for the susceptible individuals to observe 

social distance, washing of hands, covering of mouth when talking, 

coughing and sneezing  

14 𝑦 Enlightenment control measure for the exposed to be quarantined  

15 𝑍 Enlightenment control measure for the infected to be isolated  

            

2.3 Endemic disease equilibrium (EE)  
 
At the endemic disease equilibrium, infection exists and as such we let:  
 

 𝑆 = 𝑆∗, 𝐸 = 𝐸∗, 𝑄 = 𝑄∗, 𝐽 = 𝐽∗, 𝐼 = 𝐼∗, 𝐼𝑇 = 𝐼𝑇
∗ 𝑎𝑛𝑑 𝑅 = 𝑅∗ 

 

Also at equilibrium,  

 

 
𝑑𝑆

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
=

𝑑𝑄

𝑑𝑡
=

𝑑𝐽

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑰𝑻

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0 

 

The EE is represented by  [𝑆∗, 𝐸∗, 𝑄∗, 𝐽∗, 𝐼∗, 𝐼𝑇
∗ 𝑅∗] which is given by: 

 

 𝜀1 = {

𝛼(1−𝑥)

[𝜃(1+𝑦)+𝛽+𝜇]𝐸∗ ,
𝛽

[∅(1+𝑧)+𝜆+𝜎+µ]
,

𝜃(1+𝑦)𝐸∗

(𝜂+𝜇)
,

(𝜔+𝜇+𝜎)𝐼𝑇
∗

𝛾
,

(𝜂+µ)(µ+𝜎+𝛾+𝜌)(𝜔+𝜇+𝜎) 𝐼𝑇
∗−𝛾𝜂𝜃(1+𝑦)𝐸∗

∅𝛾(𝜂+µ)(1+𝑧)
,

(𝜆+µ𝛾𝜆)𝐼∗

[𝜔𝛾𝜇+𝜌𝜇𝜔(𝜔+𝜇+𝜎)]
,

𝛾𝜆𝐼∗+[𝜌(𝜔+𝜇+𝜎)+𝛾𝜔]𝐼𝑇
∗

𝛾𝜇

}                     (2) 
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3 Global Stability Analysis of Endemic Equilibrium Point of the Model 

 
Theorem 2: If 𝑅0 > 1, the endemic equilibrium point ( 1 ) of the model(1) is globally asymptotically stable. 

 

Proof: 

 

To establish the global stability of the endemic equilibrium point 𝜀1, we construct the following using Lyapunov 

function. 

 

 𝑉(𝑆∗ 𝐸∗ 𝑄∗ 𝐽∗ 𝐼∗ 𝐼𝑇
∗  𝑅∗) = (𝑆 − 𝑆∗ − 𝑆∗𝑙𝑜𝑔

𝑆∗

𝑆
) + (𝐸 − 𝐸∗ − 𝐸∗𝑙𝑜𝑔

𝐸∗

𝐸
) + (𝑄 − 𝑄∗ − 𝑄∗𝑙𝑜𝑔

𝑄∗

𝑄
) +

(𝐽 − 𝐽∗ − 𝐽∗𝑙𝑜𝑔
𝐽∗

𝐽
) + (𝐼 − 𝐼∗ − 𝐼∗𝑙𝑜𝑔

𝐼∗

𝐼
) + (𝐼𝑇 − 𝐼𝑇

∗ − 𝐼𝑇
∗ 𝑙𝑜𝑔

𝐼𝑇
∗

𝐼𝑇
) + (𝑅 − 𝑅∗ − 𝑅∗𝑙𝑜𝑔

𝑅∗

𝑅
)                                (3) 

 

Where: 

 

 
𝑑𝑆

𝑑𝑡
= ˄ − (

𝛼1𝐸+𝛼2𝑄+𝛼3𝐽+𝛼4𝐼+𝛼5𝐼𝑇

𝑁
) (1 − 𝑥)𝑆 − 𝜇𝑆 

 

 
𝑑𝐸

𝑑𝑡
= (

𝛼1𝐸+𝛼2𝑄+𝛼3𝐽+𝛼4𝐼+𝛼5𝐼𝑇

𝑁
) (1 − 𝑥)𝑆 − [𝜃(1 + 𝑦) + 𝛽 + 𝜇]𝐸 

 

  
𝑑𝑄

𝑑𝑡
= 𝜃(1 + 𝑦)𝐸 − (𝜂 + 𝜇)𝑄  

 

  
𝑑𝐽

𝑑𝑡
= 𝜂𝑄 + ∅(1 + 𝑍)𝐼 − (𝜇 + 𝜎 + 𝑟 + 𝜌)𝐽                                                                                                         (4)     

                        

 
𝑑𝐼

𝑑𝑡
= 𝛽𝐸 − [∅(1 + 𝑍) + 𝜆 + 𝜎 + 𝜇]𝐼 

 

 
𝑑𝐼𝑇

𝑑𝑡
= 𝛾𝐽 − (𝜔 + 𝜇 + 𝜎)𝐼𝑇  

 

 
𝑑𝑅

𝑑𝑡
=  𝜆𝐼 + 𝜌𝐽 + 𝜔𝐼𝑇 − 𝜇𝑅 

 

Thus: 

 

         
    (5) 

 

Therefore:- 

  
𝑑𝑉

𝑑𝑡
= (𝑆 − 𝑆∗)

[˄−
1

𝑁
(𝛼1(𝐸−𝐸∗)+𝛼2(𝑄−𝑄∗)+𝛼3(𝐽−𝐽∗)+𝛼4(𝐼−𝐼∗)+𝛼5(𝐼𝑇−𝐼𝑇

∗ ))(1−𝑥)(𝑆−𝑆∗)−𝜇(𝑆−𝑆∗)]

𝑆
+ (𝐸 −

𝐸∗) [
1

𝑁
(𝛼1(𝐸−𝐸∗)+𝛼2(𝑄−𝑄∗)+𝛼3(𝐽−𝐽∗)+𝛼4(𝐼−𝐼∗)+𝛼5(𝐼𝑇−𝐼𝑇

∗ ))(1−𝑥)(𝑆−𝑆∗)−[𝜃(1+𝑦)+𝛽+𝜇](𝐸−𝐸∗)

𝐸
] +

(𝑄−𝑄∗)[𝜃(1+𝑦)(𝐸−𝐸∗)−(𝜂+𝜇)(𝑄−𝑄∗)]

𝑄
+

(𝐽−𝐽∗)[𝜂(𝑄−𝑄∗)+∅(1+𝑍)(𝐽−𝐽∗)−(𝜇+𝜎+𝑟+𝜌)(𝐽−𝐽∗)]

𝐽
+

(𝐼−𝐼∗)[𝛽(𝐸−𝐸∗)−[∅(1+𝑍)+𝜆+𝜎+𝜇](𝐼−𝐼∗)]

𝐼
+

(𝐼𝑇−𝐼𝑇
∗ )[𝛾(𝐽−𝐽∗)− (𝜔+𝜇+𝜎)(𝐼𝑇−𝐼𝑇

∗ )]

𝐼𝑇
+

(𝑅−𝑅∗)[𝜆(𝐼−𝐼∗)+𝜌(𝐽−𝐽∗)+𝜔(𝐼𝑇−𝐼𝑇
∗ )−𝜇(𝑅−𝑅∗)]

𝑅
     

(6)                                                                    

 

Then we have: 
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Therefore: 

 

 
𝑑𝑉

𝑑𝑡
=

˄(1−𝑥)(𝑆−𝑆∗)

𝑆
−

𝛼1(1−𝑥)

𝑁

(𝐸−𝐸∗)(𝑆−𝑆∗)2

𝑆
+

𝛼2(1−𝑥)

𝑁

(𝑄−𝑄∗)(𝑆−𝑆∗)2

𝑆
+

𝛼3(1−𝑥)

𝑁

(𝐽−𝐽∗)(𝑆−𝑆∗)2

𝑆
+

𝛼4(1−𝑥)

𝑁

(𝐼−𝐼∗)(𝑆−𝑆∗)2

𝑆
+

𝛼5(1−𝑥)

𝑁

(𝐼𝑇−𝐼𝑇
∗ )(𝑆−𝑆∗)2

𝑆
−

𝜇(𝑆−𝑆∗)2

𝑆
+

𝛼1(1−𝑥)

𝑁

(𝐸−𝐸)∗(𝑆−𝑆∗)

𝑆
+

𝛼2(1−𝑥)

𝑁

(𝐸−𝐸∗)(𝑄−𝑄∗)(𝑆−𝑆∗)

𝑆
+

𝛼3(1−𝑥)

𝑁

(𝐸−𝐸∗)(𝐽−𝐽∗)(𝑆−𝑆∗)

𝑆
+

𝛼4(1−𝑥)

𝑁

(𝐸−𝐸∗)(𝐼−𝐼∗)(𝑆−𝑆∗)

𝑆
+

𝛼5(1−𝑥)

𝑁

(𝐸−𝐸∗)(𝐼𝑇−𝐼𝑇
∗ )(𝑆−𝑆∗)

𝑆
−

[𝜃(1+𝑦)+𝛽+𝜇](𝐸−𝐸∗)

𝐸
+

(𝑄−𝑄∗)𝜃[(1+𝑦)(𝐸−𝐸∗)]

𝑄
−

(𝜂+𝜇)(𝑄−𝑄∗)2

𝑄
+

(𝐽−𝐽∗)𝜂(𝑄−𝑄∗)

𝐽
+

(𝐽−𝐽∗)∅(1+𝑍)(𝐼−𝐼∗)

𝐽
−

(𝜇+𝜎+𝑟+𝜌)(𝐽−𝐽∗)2

𝐽
+

(𝐼−𝐼∗)𝛽(𝐸−𝐸∗)

𝐼
−

(𝐼−𝐼∗)2[∅(1+𝑍)+𝜆+𝜎+𝜇]

𝐼
+

(𝐼𝑇−𝐼𝑇
∗ )𝛾(𝐽−𝐽∗)

𝐼𝑇
−

 
(𝜔+𝜇+𝜎)(𝐼𝑇−𝐼𝑇

∗ )2

𝐼𝑇
+

(𝑅−𝑅∗)𝜆(𝐼−𝐼∗)

𝑅
+

(𝑅−𝑅∗)𝜌(𝐽−𝐽∗)

𝑅
+

(𝑅−𝑅∗)𝜔(𝐼𝑇−𝐼𝑇
∗ )

𝑅
−

𝜇(𝑅−𝑅∗)2

𝑅
                                                             (8)    

 

Collecting the positive and negative terms from equation (8) 

 

We obtain  
𝑑𝑉

𝑑𝑡
= 𝑀1 − 𝑀2 

 

Where 𝑀1 represents the positive terms and 𝑀2 represents the negative terms in the expression  (8) 

 

 𝑀1 =
(𝑆−𝑆∗)2

𝑆
[

𝛼2(1−𝑥)(𝑄−𝑄∗)

𝑁
+

𝛼3(1−𝑥)(𝐽−𝐽∗)

𝑁
+

𝛼4(1−𝑥)(𝐼−𝐼∗)

𝑁
+

𝛼5(1−𝑥)(𝐼𝑇−𝐼𝑇
∗ )

𝑁
] +

(𝐸−𝐸∗)2

𝐸

𝛼1

𝑁
(1 − 𝑥)(𝑆 − 𝑆∗) +

(𝑆−𝑆∗)

𝑆
˄(1 − 𝑥) +

(𝐸−𝐸∗)

𝐸
[

𝛼2(1−𝑥)(𝑄−𝑄∗)(𝑆−𝑆∗)

𝑁
+

𝛼3(1−𝑥)(𝐽−𝐽∗)(𝑆−𝑆∗)

𝑁
+

𝛼4(1−𝑥)(𝐼−𝐼∗)(𝑆−𝑆∗)

𝑁
+

𝛼5(1−𝑥)(𝐼𝑇−𝐼𝑇
∗ )(𝑆−𝑆∗)

𝑁
] +

(𝑄−𝑄∗)

𝑄
𝜃(1 + 𝑦)(𝐸 − 𝐸∗) +

(𝐽−𝐽∗)

𝐽
[𝜂(𝑄 − 𝑄∗) + ∅(1 + 𝑍)(𝐼 − 𝐼∗)] +

(𝐼−𝐼∗)

𝐼
𝛽(𝐸 − 𝐸∗) +

(𝐼𝑇−𝐼𝑇
∗ )

𝐼𝑇
𝛾(𝐽 − 𝐽∗) +

 
(𝑅−𝑅∗)

𝑅
[𝛾(𝐼 − 𝐼∗) + 𝜌(𝐽 − 𝐽∗) + 𝜔(𝐼𝑇 − 𝐼𝑇

∗ )]                                                                                                                     (9) 

 

and 

 

 
 

Therefore, if 𝑀1 < 𝑀2, then 
𝑑𝑉

𝑑𝑡
 will be negative definite along the solution path of the system. Thus this 

implies that 
𝑑𝑉

𝑑𝑡
< 0, and 

𝑑𝑉

𝑑𝑡
= 0   only at a point where𝑆 = 𝑆∗, 𝐸 = 𝐸∗, 𝑄 = 𝑄∗, 𝐽 = 𝐽∗, 𝐼 = 𝐼∗, 𝐼𝑇 = 𝐼𝑇

∗  𝑅 =

𝑅∗. 

 

Therefore, the largest compact set is  {(𝑆∗, 𝐸∗, 𝑄∗, 𝐽∗, 𝐼∗, 𝐼𝑇
∗  𝑅∗) ∈ 

𝑑𝑉

𝑑𝑡
= 0} is just the singleton set (𝜀1) where 

(𝜀1) is the endemic equilibrium point. 
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According to Lasalle’s Invariant Principle in [15], it  therefore means that (𝜀1) is globally assymptotically stable 

in  if 𝑀1 < 𝑀2. 

 

This results epidemiologically implies that the COVID-19 will invade the population in respective of the initial 

conditions (population) considered. 

 

4 Conclusion 

 
In this paper, we conducted global stability analysis of Corona Virus (COVID’19) mathematical model. Result 

of the analysis shows that the model endemic equilibrium point is globally asymptotically stable, which 

epidemiological implies that the disease will be wiped out of the population in respective of the initial condition 

or the population under consideration. 
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