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Abstract
In this work, for the lowest states with angular momentum, l= 0,1,2 the energies and
eigenfunctions of the endohedrals H@C36 and H@C60 are presented. The confining
spherically-symmetric barrier was modeled by an inverted Gaussian function of depth ω0, width σ
and centered at rc, w(r) =−ω0 exp[−(r− rc)2/σ2]. The spectra of the system as a function of the
parameters (ω0,σ, rc) is calculated using three distinct numerical methods: (i) Lagrange-mesh
method, (ii) fourth order finite differences and (iii) the finite element method. Concrete results
with not less than 11 significant figures are displayed. Also, within the Lagrange-mesh approach
the corresponding eigenfunctions and the expectation value of r for the first six states of s,p, and d
symmetries, respectively, are presented as well. Our accurate energies are taken as initial data to
train an artificial neural network that generates faster and efficient numerical interpolation. The
present numerical results improve and extend those reported in the literature.

1. Introduction

In the majority of problems the time-independent Schrödinger equation, the central object in quantum
mechanics does not admit exact solutions in terms of elementary or special functions. In such cases, it is
necessary to solve this equation by means of numerical and approximate methods which inherently carry a
certain degree of accuracy. For instance, some of the most common numerical methods are the following: the
Numerov method, the spline-based method, the finite difference, the finite element, the Lagrange mesh
method, and the variational one, to name a few. Interestingly, artificial intelligence algorithms have emerged
as a promising tool for tackling eigenvalue problems of differential and integrodifferential operators [1, 2]
with important applications on the solution of Schrödinger equation [3–7] and open quantum systems
[8–10]. In particular, artificial neural networks have shown to be accurate and efficient algorithms for
calculating eigenvalues and eigenfunctions, due mainly to their high capabilities to approximate complex
functions from data [11–13].

Classical numerical schemes are widely used in the study of both spatially confined and unconfined
quantum systems. In particular, the investigation of spatially confined quantum systems has gained much
interest because some of their physical properties change abruptly with the size of the confining barrier.
Furthermore, many physical phenomena can be modeled by a confined quantum system for example: atoms
and molecules subject to high external pressures, atoms and molecules in fullerenes, inside cavities such as
zeolite molecular sieves or in solvent environments, the specific heat of a crystalline solid under high
pressure, etc. A complete list of applications can be found in the articles and reviews on the subject [14–26].

Eighty-five years ago, Michels et al [27] calculated the variation of the polarizability of hydrogen under
high pressure. To this end, they proposed a simple model of the confined hydrogen atom where, to a first
approximation, the nucleus is anchored in the center of a spherical box of radius r0 and impenetrable walls.
It is assumed that this infinite potential is due to the presence of neighboring negative electric charges. The
corresponding wave function vanishes at the surface of the sphere, i.e. it must obey Dirichlet boundary
conditions. Since then, this model has been successfully applied in the study of confined many-electron
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atoms and molecules (see [28, 29] and references therein). However, it takes into account the effects of
repulsive forces only. A more realistic potential that embodies an attractive force considers a softer
confinement in cavities of penetrable walls. The simplest penetrable confining potential of this type is that of
a step potential [30, 31].

Another relevant example of a penetrable potential is realized by the logistic potential used in the analysis
of the entropic properties of hydrogen atom [32].

Likewise, in the study of atoms inside fullerenes, the corresponding potential has been modeled
effectively by the attractive spherical shell [18], the δ-potential [33] and a Gaussian spherical shell [34, 35].
Moreover, a spatially confined system inside an impenetrable spherical barrier, in addition to the inverted
Gaussian potential [36–39], was employed by Lumb et al to describe the emission of two photons in the
hydrogen atom [40].

It has been recognized as an advantage to study free systems, where bound states exist and the potential
vanishes V→ 0 at large distances, using the methods applied to the spatially confined systems (see [41–43]).
In such a procedure the original system with potential V is additionally enclosed inside an impenetrable box
of radius r0. Afterward, the wave functions as well as the eigenvalues are calculated in a sequence by
increasing the value of this parameter r0 until the desired accuracy is achieved. Mathematically, it has been
demonstrated that this procedure converges to the exact results of the original system where the spatial
confinement is absent (see [41–43]). Hence, the artificial spatial confinement gives highly accurate results
with respect to the exact values, which can not be guaranteed by other methods [41]. Some examples to
illustrate this point are the free hydrogen atom, an electron in the Yukawa potential, the Hulthen potential,
and the singular oscillator (see [41–43]).

In this work, in the Born-Oppenheimer approximation, we calculate the energies and wave functions of
the lowest states of a hydrogen atom confined inside a spherical penetrable barrier. This system has been used
in [34, 35] (and references therein) to model the hydrogen atom confined by C36 and C60 fullerenes, where
the corresponding confining potential is described by an inverted Gaussian function. Here, a more accurate
and systematic study is carried out. To solve the Schrödinger equation we employ three different numerical
methods: the Lagrange mesh, finite difference, and finite element. They are complemented by the training
and use of an artificial neural network. For the sake of self-consistency, a brief description of the
aforementioned numerical methods is presented in the next section with the corresponding references.

The goal of the present study is threefold. Firstly, we aim to improve previous results reported in the
literature. Secondly, we make a comparison of the numerical results obtained with different methods and
discuss the advantages of each individual approach. Finally, we show that the complementary use of an
artificial neural network leads to efficient numerical interpolation.

2. Methodology

The Schrödinger equation of hydrogen atom confined by a C36 and C60 endohedral cavities, in atomic units
(ℏ=me = e= 1), is of the form [

− 1

2
∆ − 1

r
+ w(r)

]
ψ = Eψ, (1)

where∆ is the three-dimensional Laplacian, and the Gaussian spherical barrier w(r) is given by

w(r) = −ω0 exp[−(r− rc)
2/σ2], (2)

here, ω0 is the well depth, rc is the position of the center of the peak and σ is the width of the Gaussian,
respectively. In concrete calculations, for the purposes of comparison with the existing results in the
literature, from time to time the parameters rc and σ will be presented in Angstroms (Å).

As is usual for any central potential, the angular momentum is conserved and the solutions of the
Schrödinger equation (1) can be factorized in spherical coordinates (r,θ,ϕ). Explicitly, they read

ψnlm(r,θ,ϕ) = Rnl(r)Yl,m(θ,ϕ), (3)

with Yl,m(θ,ϕ) being a spherical harmonic function. In the standard approach, it is convenient to introduce
an auxiliary function unl(r) defined by the relation Rnl(r) = unl(r)/r. In this case, from (1) and (3) it follows
that unl(r)must obey the isospectral radial problem[

− 1

2

d2

dr2
+ Veff(r)

]
unl(r) = Eunl(r), (4)
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Figure 1. Effective potential Veff(r, rc) (5) at l= 0 for ω0 = 1 a.u., σ= 0.5 a.u. and four different values in a.u. of rc = 0.5,1,2 and
3.

Figure 2. Effective potential Veff(r) (5) with ω0 = 0.5 a.u. and rc = 3.54 Å for different σ values: σ= 0 Å (continuous red line),
σ= 0.25 Å (blue dashed line), σ= 0.57 Å (orange dotted line) and σ= 1.59 Å (green dash-dotted line). The main figure
corresponds to the case of l= 0 while l= 1 is shown in the inset.

with the boundary condition unl(r= 0) = 0. The spectral problem (4), is defined in the domain
(configuration space) r ∈ [0,∞). The effective potential appearing in (4) is given by

Veff(r) = −1
r
+

l(l+ 1)

2 r2
+ w(r), (5)

l= 0,1,2, . . . ,(n− 1) is the quantum number of angular momentum. Formally, (4) describes a
one-dimensional particle of unit mass in the half positive line with an effective potential Veff(r). The shape of
Veff is displayed in figure 1 for fixed l= 0, ω0 = 1 a.u., σ= 0.5 a.u. and four different values of rc (the position
of the center of the peak); there exists a critical value rcritc ≈ 1.05 a.u. such that for rc > rcritc the effective
potential develops a second minima. In turn, figure 2 shows the behavior of Veff (5) as a function of the
width σ of the Gaussian for fixed ω= 0.5 a.u. and rc = 3.54 Å.

In order to solve the radial Schrödinger equation (4), three different methods will be employed: (i) The
Lagrange-mesh method (LMM), (ii) finite difference method (FDM), and (iii) finite element method
(FEM). By combining our accurate results with an artificial neural network, we construct an efficient
numerical interpolation for the energies.

2.1. The Lagrange-Meshmethod
In the context of the LMM [44–46], a set of N Lagrange functions fi (x) defined over the domain of the radial
variable is associated with N mesh points xi which correspond to the zeros of Laguerre polynomials of degree
N, i.e. LN(xi) = 0. The Lagrange-Laguerre functions fi (x) which satisfy the Lagrange conditions

fi(xj) = λ
−1/2
i δij, (6)

at the N mesh points are given by

fi(x) = (−1)i x

x1/2i

LN(x)

(x− xi)
e−x/2. (7)

3
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The coefficients λi are the weights associated with a Gauss quadrature

ˆ ∞

0
G(x)dx≈

N∑
k=1

λkG(xk). (8)

In terms of the N Lagrange functions fi(x) (7), the solution of the Schrödinger equation (4) is expressed as

ψ(r) =
N∑
i=1

cifi(r). (9)

The trial function (9), together with the Gauss quadrature (8) and the Lagrange conditions (6) leads to
the system of variational equations

N∑
j=1

[
h−2Tij +

(
l(l+ 1)

2h2 x2i
− 1

hxi
+ω(hxi)

)
δij

]
cj = Eci, (10)

where ω(xi) is the Gaussian potential (2) evaluated at the mesh points xi and T ij are the kinetic-energy
matrix elements whose explicit expression is found in [46]. h is a scaling factor that allows to adjust the mesh
to the system in consideration. By solving the system (10), not only the energies E are obtained but also the
eigenvectors ci from which the approximation to the wave function (9) is obtained.

Inside the LMM approach, the expectation value of the radial coordinate r is easily calculated. Given the
approximation to the wave function (9) together with Gauss quadrature (8) and the Lagrange condition (6)
leads to

⟨r⟩=
N∑
i=1

c2i xi, (11)

where ci are the eigenvectors resulting from solving (9) and xi are the mesh points.

2.2. Finite difference method
The FDM is a numerical approach easy to implement on a computer, and it is used to solve ordinary as well
as partial differential equations in an approximate way. The method is based on the discretization of the
Hamiltonian on a spatial grid. Consider the system defined in a domain [0,L], the Schrödinger equation is
then solved on a uniform grid [47] defined by the set of discrete points which are the nodal points

{
rj
}
. The

domain is split into N subintervals of equal length h:

0= r1 < r2 < .. . < rN+1 = L. (12)

where

h= rj+1− rj. (13)

In the present work, we use a fourth-order centered difference approximation to the second derivative,
namely

ũ
′ ′

=
−ũ(rj+2)+ 16ũ(rj+1)− 30ũ(rj)

12h2

+
16ũ(rj−1)− ũ(rj−2)

12h2
+ O(h4). (14)

Substituting this definition on the Schrödinger equation (4) we find that there is one equation for each j
value. For j= 1 and j=N we impose the boundary condition ψ(r1) = ψ(rN+1 = L) = 0. Hence, these
systems of equations can be written as an eigenvalue problem HC = EC where the matrix H is a pentagonal
matrix, whereas the vector C contains the values of ũ evaluated on the grid, i.e. Ci = ũ(ri). To solve the
differential equation, we select the parameters of the potential and angular momentum l of the states, we
propose a value of Lmuch higher than rc, and solve the eigenvalue problem. We increase the value of L and
solve the eigenvalue problem again, compare the energy values and repeat this process until the desired
accuracy is achieved. We call Lmax(l) to the value of L at which the desired accuracy is achieved. Note that the
boundary condition at ψ(rN+1 = L) = 0 is equivalent to the existence of an impenetrable barrier at that

4
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precise point, this fact establishes the relationship with the confined systems. In this case, the Schrödinger
equation to be solved can be written as (cf (4)):

− 1

2

d2ũnl
dr2

+ Veff(r) ũnl + Vc ũnl = Emax ũnl, (15)

where Veff(r) is the effective potential (5) and the confinement potential V c is defined as follows

Vc(r) =

{
0, if r⩽ L ,
∞, if r> L .

(16)

The above spectral problem (15) is defined in the reduced domain r ∈ [0, L]. The Schrödinger equation (15)
was studied by Lumb et al [40] in connection with the two-photon emission in confined hydrogen atom. In
the region r< L the Schrödinger equation becomes

− 1

2

d2ũnl
dr2

+ Veff(r) ũnl = Emax ũnl, (17)

cf (4). The function ũ satisfies the Dirichlet boundary conditions:

ũnl(0) = 0,

ũnl(L) = 0. (18)

The original energy eigenvalues and eigenfunctions of the free (spatially unbounded) system (4) are
recovered in the limit L→∞,

ũnl(r) → unl(r), Emax → E. (19)

2.3. Finite element method
The FEM combines the discretization of the space in elements (intervals) and the use of polynomial
interpolating functions on each element. This method is widely used in engineering, classical physics, and
quantum mechanics problems, among others. The discretization is based on the reformulation of the
relevant differential equation as an equivalent variational problem. The Garlekin methods are then employed
in the corresponding minimization procedure [48]. In general, one can identify the following steps to solve
the associated differential equation: (i) to present the problem in a variational formulation, (ii) a
discretization of the domain using FEM, and finally, (iii) to find the solution of the discrete problem, which
may consist of the solution of a system of simultaneous equations or an eigenvalue problem.

In QuantumMechanics the FEM was used from a few years ago [47, 49–54]. An excellent introduction to
FEM in QuantumMechanics can be found in the Ram-Mohan’s book [52]. Only the key points of the
method will be presented here.

The time independent Schrödinger equation for a particle of massm subjected to a potential energy V(r)
is given by: [

− ℏ2

2m
∆ + V(r)

]
ψ(r) = Eψ(r). (20)

This equation can be obtained by minimizing the following action integral I:

I[ψ, ψ∗] =

ˆ
d3r

[
ℏ2

2m
∇ψ∗ ·∇ψ+ψ∗ (V − E)ψ

]
, (21)

where ψ∗ and ψ are considered as two independent ‘fields’. It is assumed that ψ is continuous up to its second
derivative. By varying the action I with respect to ψ∗ we obtain the Schrödinger equation (20). For a
spherical symmetric potential V= V(r), only the dynamics of the r coordinate is not trivial. The problem
reduces to the one-dimensional case in the r-space, the variable r varies in the interval [0,L]. Hence, the
action integral I (in atomic units) becomes:

I=

ˆ L

0
dr

{
1

2

dψ∗

dr

dψ

dr
+ψ∗ [Veff(r)− E]ψ

}
, (22)

where ψ = ψ(r), and Veff(r) is an effective potential Veff(r) = V(r)+ l(l+1)
2 r2 , cf (5).

5
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Now, the interval [0,L] is divided into small subintervals called elements. The action integral (22) can be
decomposed as the sum of the action computed in each element,

I =
n∑

j=1

I( j), (23)

where n is the number of elements and I( j) is the action integral evaluated on the jth element. Explicitly, the
wave function ψj defined in the jth element is expanded as a linear combination

ψj(r) =
n∑

j=1

cjNj(r), (24)

where cj, j= 1,2, . . . ,n, are unknown coefficients to be determined whereas Nj(r) are interpolating
polynomials. These are defined for the jth element and they are identically zero out of this element.

The basic idea is to make the variation of the action integral with respect to the coefficients c∗i ,

δI

δc∗i
= 0, i= 1,2, . . . ,n, (25)

and by solving these equations to obtain the optimal energies and eigenfunctions.
In particular, Guimaraes and Prudente [53] developed an alternative version of FEM called the p-finite

element method (pFEM) to study the confined hydrogen atom, and Nascimento et al [34] employed a pFEM
version to study the electron structure of endohedrally confined atoms using an attractive Gaussian potential
to model atoms inside fullerenes.

As L becomes very large the energies of a confined system approach to those of the confinement-free
system. In practice, a large value of both L and the parameter n, and a polynomial degree for the Nj(r)
appearing in (24) are chosen and then, the generalized eigenvalue problem is solved. For a fixed L, by
increasing either the value of n or the polynomial degree, or both, higher precision in the results can be
achieved as we will explain in the next section.

2.4. Artificial neural networks
Artificial intelligence has emerged as a collection of computational techniques which seek to mimic the
human brain in order to complete tasks for which standard algorithms lead to partially satisfactory results or
are costly to implement [55–58]. Particularly, neural networks are artificial intelligence algorithms inspired
by the workings of neurons in the human brain. These algorithms have demonstrated the capacity of
pinpointing relevant specific pieces of information ‘buried’ in huge data sets and unveiling complex
non-linear relationships between the inputs and target, which would be all but impossible to accomplish
through a standard visual inspection [59–61].

In this work, we implement a neural network to estimate the eigenvalues of the radial Schrödinger
equation (4) for different positions of the peak of the Gaussian, rc. This neural network consists of a
two-layer feed-forward architecture with ten neurons in the hidden layer and a linear neuron in the output
layer. Note that the input node of our neural network corresponds to the center of the inverted Gaussian
potential, rc. Figure 3 shows the architecture of the regression neural network. In general, the output of each
neuron before the activation function reads,

z=
N∑
i=1

ωixi, (26)

where ωi are the synaptic weights, xi are the inputs, and N is the number of inputs. Importantly, all the
neurons in the output layer contain linear activation functions whereas the neurons in the hidden layer have
sigmoid functions given by

α(z) =
1

1+ e−z
. (27)

Synaptic weights of the neural network are optimized with the Levenberg-Marquardt backpropagation
method in a direction that minimizes the mean squared error [62, 63]. This method approaches
second-order training speed without having to compute the Hessian matrix. Because the performance

6
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Figure 3. Scheme of two-layer regression neural network used to estimate the energies of the hydrogen atom for the 1s state as a
function of the center rc of the inverted Gaussian potential. The model consists of an input node, a hidden layer of sigmoid
neurons, and a linear output layer.

function is given by a sum of squares then the Hessian matrix can be approximated asH= JTJ, where J is the
Jacobian matrix. Using this approximation, the synaptic weights can be updated by the following expression,

wk+1 = wk − [H+µI]−1JTe (28)

where k denotes the kth iteration, µ is the learning rate and e is the vector of networks errors. To train the
neural network, we use a subset of the dataset that contains eigenvalues of the radial Schrödinger
equation (4) for different positions rc of the peak of the Gaussian. These eigenvalues are calculated by the
LMM. After the training stage, the neural network is able to predict the eigenvalues of the whole dataset with
a coincidence at six significant digits at least.

3. Results and discussion

In order to describe the confinement of the hydrogen atom inside C36 and C60 fullerene cages, an attractive
spherical Gaussian potential [34] is considered (1). Energies, eigenfunctions and expectation values of r for
the first six states of s,p and d symmetries are accurately calculated. In order to be able to compare with
previous results, the values of the parameters of the Gaussian potential (1) that are investigated in detail are:
rc = 2.5 Å (for H@C36) and rc = 3.54 Å (for H@C60), ω0 = 0.5 a.u. and σ = 0.26,0.57 and 1.59 Å. Previous
work has shown [64–66] that the Lagrange-mesh (LMM) method provides very accurate values for the
energy values. The corresponding results obtained using the LMM are shown in tables 1–3 with 12
significant figures; overall within this precision, as a result of explicit computations it turns out that the
LMM is the most practical, accurate and easier to implement an approach for the present case (see discussion
below). We emphasize that, in principle, the three distinct numerical approaches (i) LMM, (ii) fourth order
finite differences, and (iii) the FEM, can lead to extremely highly accurate results by choosing more refined
values of the parameters of the methods with the corresponding growth of the computation time.

Before discussing the concrete results let us briefly mention some details about the LMM. In the
system (10), there are two free parameters: the size of the mesh N and the scaling factor h. The optimal values
of these two parameters (N, h) depend on the considered state of the system as well as on the value of the
parameters occurring in the Gaussian potential. In general, the results presented in tables 1–3 for states s, p
and d, respectively, are obtained with a mesh of at least N = 250 points and h in some interval between
h ∈ [0.02− 1.0]. For states with small quantum numbers, even meshes of size n= 120 are adequate. For
example, if we consider the state 1s with w0 = 0.5, rc = 2.5 Å and σ= 2.26 Å the energy is obtained by using
(N,h) = (120,0.04− 0.12) while for the state 8d, for the same values of the parameters of the potential,
(N,h) = (250,0.26− 0.30).

7
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Table 1. Energy E and expectation value ⟨r⟩ of the hydrogen atom of the 1s . . .6s states in presence of a inverted Gaussian potential (2)
centered at rc = 2.50 and 3.54 Å with w0 = 0.5 a.u. as a function of σ. The free case corresponds to σ= 0. For rc = 3.54 Å comparison is
done with results presented in [35]. The values for E and ⟨r⟩ are displayed with 12 significant figures, and they correspond to the results
obtained with the Lagrange Mesh Method. The coincidence with the FEM results is in 7–8 digits whilst for the FDM, the agreement with
the results of the LMM is in all figures.

rc = 2.50 Å rc = 3.54 Å

ns σ Å E a.u. ⟨r⟩ a.u. E a.u. [35] ⟨r⟩ a.u.

1s 0.00 −0.500 000 000 000 1.500 000 0000 −0.500 000 000 000 1.500 000 000 00
0.26 −0.505 803 094 144 1.625 016 8416 −0.500 226 076 582 −0.500 2261 1.510 216 498 28
0.57 −0.528 322 517 980 2.102 338 6012 −0.501 274 477 556 −0.501 2745 1.562 697 296 13
1.59 −0.700 338 868 882 2.292 977 5088 −0.558 460 325 443 −0.558 4603 3.053 971 9446

2s 0.00 −0.125 000 000 000 6.000 000 0000 −0.125 000 000 000 6.000 000 000 00
0.26 −0.240 727 300 618 4.641 295 9696 −0.222 678 640 702 −0.222 6786 6.334 049 117 02
0.57 −0.352 513 053 170 4.066 550 9890 −0.341 831 613 201 −0.341 8316 6.421 677 897 48
1.59 −0.493 011 698 186 4.218 131 7661 −0.489 180 987 884 −0.489 1810 5.057 577 1424

3s 0.00 −0.055 555 555 556 13.500 000 000 −0.055 555 555 556 13.500 000 0000
0.26 −0.064 455 619 315 12.272 530 044 −0.056 490 840 224 −0.056 490 84 13.650 810 7402
0.57 −0.069 257 879 934 11.329 276 155 −0.063 868 006 446 −0.063 868 01 11.172 615 4458
1.59 −0.204 794 618 028 5.969 868 8054 −0.247 983 103 635 −0.247 9831 6.542 671 5036

4s 0.00 −0.031 250 000 000 24.000 000 000 −0.031 250 000 000 24.000 000 0000
0.26 −0.034 143 357 000 22.414 917 645 −0.031 553 410 884 −0.031 553 41 23.564 684 5778
0.57 −0.036 157 620 392 21.040 808 457 −0.036 248 303 973 −0.036 248 30 19.451 723 6193
1.59 −0.056 183 917 194 13.817 270 956 −0.070 803 944 469 −0.070 803 95 10.888 054 490

5s 0.00 −0.020 000 000 000 37.500 000 000 −0.020 000 000 000 37.500 000 0000
0.26 −0.021 319 794 124 35.527 535 710 −0.020 260 703 774 36.568 599 620
0.57 −0.022 355 880 943 33.759 026 704 −0.022 999 812 535 31.563 158 8038
1.59 −0.030 981 035 591 24.577 416 804 −0.034 734 278 117 22.431 757 286

6s 0.00 −0.013 888 888 889 54.000 000 000 −0.013 888 888 889 54.000 000 0000
0.26 −0.014 606 403 251 51.633 586 493 −0.014 097 009 471 52.672 305 540
0.57 −0.015 206 956 729 49.482 686 203 −0.015 733 494 004 46.870 636 8157
1.59 −0.019 751 915 407 38.280 917 640 −0.021 384 692 368 35.795 142 275

The convergence of the LMM is determined by the stability of the results with respect to an increase in
the size of the base N and the variation of h. Table 1 presents the results for the 1s, . . . ,6s states. For
rc = 3.54 Å a comparison with [35] is possible for the levels 1s, 2s, 3s, 4s with σ = 1.59,0.57 and 0.26 Å where
it can be seen a complete agreement in 7 decimal digits (for 1s and 2s states) and 8 decimal digits (for 3s and
4s). For completeness, the case σ= 0 (the free hydrogen atom) is also presented. For all these s-states, the
energy decreases by increasing the value of σ as can be seen in figure 4(c). On the other hand, the presence of
the Gaussian potential has an important effect on the expectation value of r as indicated in the seventh
column of table 1 (see also figure 4(d)): at fixed rc = 3.54 Å (i) as a function of σ ∈ [0.00,1.59] Å, ⟨r⟩
increases for the ground state, whilst (ii) for the states 4s, . . . ,6s, ⟨r⟩ decreases. Columns 3 and 4 of table 1
(see also figures 4(a) and (b)) present the results of the energy and the expectation value ⟨r⟩ when the center
of the Gaussian potential is rc = 2.50 Å. As well as for rc = 3.54 Å, the energy decreases as a function of σ.
The behavior of the expectation value ⟨r⟩ is depicted in figure 4(b). This effect on ⟨r⟩ reflects how the
electronic charge is attracted to the Gaussian part of the potential.

States with l= 1 (2p, . . . ,7p) are presented in table 2 for rc = 2.50 and 3.54 Å. In both cases, with respect
to the free configuration (σ= 0), the system gets more bound as the value of σ increases (see figures 5(a) and
(c)). For rc = 3.54 Å a comparison with [35] is also possible: we see a complete agreement in 7 decimal digits
for the 2p state and 8 decimal digits for the 3p and 4p states for the three values of σ = 0.26,0.57 and 1.59 Å.
The expectation value ⟨r⟩ is shown in figures 5(b) and (d).

Results of the energy and the expectation value ⟨r⟩ for l= 2 (3d, . . . ,8d) are displayed in table 3 for
rc = 2.50 and 3.54 Å. For both values of rc, by increasing σ the energy becomes more negative compared to
the unconfined system (σ= 0). The expectation value ⟨r⟩ exhibits a decreasing behavior with the increasing
of σ for all states except the lowest 3d state, which decreases and eventually increases.

3.1. Comparison of LMMwith the finite difference and FEMs
The FDM was implemented in the second and fourth order in Matlab. Calculations using second-order finite
differences require a very large number n of nodal points, which implies to diagonalize very large matrices,
and therefore a significant computational time is involved. For this reason, we decided to use fourth-order

8



Mach. Learn.: Sci. Technol. 4 (2023) 015024 H Olivares-Pilón et al

Table 2. Energy E and expectation value ⟨r⟩ of the hydrogen atom of the 2p, . . . ,7p states in presence of a inverted Gaussian potential (2)
centered at rc = 2.50 and 3.54 Å with w0 = 0.5 a.u. as a function of σ. The free case corresponds to σ= 0. For rc = 3.54 Å comparison is
done with results presented in [35]. The values for E and ⟨r⟩ are displayed with 12 significant figures, and they correspond to the results
obtained with the Lagrange Mesh Method. The coincidence with the FEM results is in 7− 8 digits whilst for the FDM, the agreement
with the results of the LMM is in all figures.

rc = 2.50 Å rc = 3.54 Å

np σ Å E a.u. ⟨r⟩ a.u. E a.u. [35] ⟨r⟩ a.u.

2p 0.00 −0.125 000 000 000 5.000 000 0000 −0.125 000 000 000 5.000 000 0000
0.26 −0.235 017 656 232 4.607 321 7318 −0.205 773 905 331 −0.205 7739 6.194 941 0697
0.57 −0.358 937 721 074 4.600 980 5888 −0.321 662 542 152 −0.321 6625 6.497 295 5252
1.59 −0.524 721 262 609 4.498 847 2199 −0.487 790 459 579 −0.487 7905 6.400 068 2529

3p 0.00 −0.055 555 555 555 12.500 000 000 −0.055 555 555 555 12.500 000 000
0.26 −0.059 201 294 702 12.295 298 412 −0.058 921 847 548 −0.058 921 85 9.714 367 4959
0.57 −0.064 787 981 905 10.822 752 863 −0.072 949 413 182 −0.072 949 41 6.510 334 8451
1.59 −0.248 825 019 321 5.325 475 7370 −0.253 036 633 049 −0.253 036 63 6.150 340 6694

4p 0.00 −0.031 250 000 000 23.000 000 000 −0.031 250 000 000 23.000 000 000
0.26 −0.032 157 720 549 22.700 493 507 −0.036 553 597 541 −0.036 553 60 17.230 927 430
0.57 −0.034 940 841 538 20.400 019 294 −0.042 230 125 318 −0.042 230 13 16.420 194 663
1.59 −0.063 945 693 111 11.042 617 509 −0.084 718 765 323 −0.084 718 77 8.806 674 0094

5p 0.0 −0.020 000 000 000 36.500 000 000 −0.020 000 000 000 36.500 000 000
0.26 −0.020 360 792 830 36.096 483 134 −0.023 349 792 551 30.203 357 619
0.57 −0.021 903 580 743 33.091 901 133 −0.025 258 633 309 28.971 093 917
1.59 −0.033 489 056 655 21.958 625 107 −0.035 932 061 579 21.062 981 799

6p 0.00 −0.013 888 888 889 53.000 000 000 −0.013 888 888 889 53.000 000 000
0.26 −0.014 070 782 545 52.498 386 898 −0.015 883 759 185 45.834 836 839
0.57 −0.014 999 966 315 48.833 976 319 −0.016 767 326 295 44.081 940 239
1.59 −0.020 903 914 137 35.390 733 125 −0.021 816 312 170 34.305 718 085

7p 0.00 −0.010 204 081 633 72.500 000 00 −0.010 204 081 633 72.500 000 000
0.26 −0.010 309 583 975 71.904 566 27 −0.011 458 478 666 64.278 040 559
0.57 −0.010 907 611 689 67.596 640 10 −0.011 950 076 576 62.104 185 020
1.59 −0.014 343 119 913 51.737 977 258 −0.014 800 187 457 50.435 203 259

Table 3. Energy E and expectation value ⟨r⟩ of the hydrogen atom of the 3d, . . . ,8d states in presence of a inverted Gaussian potential (2)
centered at rc = 2.50 and 3.54 Å with w0 = 0.5 a.u. as a function of σ. The free case corresponds to σ= 0. Here the values for E and ⟨r⟩
are displayed with 12 significant figures, and they correspond to the results obtained with the Lagrange Mesh Method. The coincidence
with the FEM results is in 7–8 digits whilst for the FDM, the agreement with the results of the LMM is in all figures.

rc = 2.50 Å rc = 3.54 Å

nd σÅ E a.u. ⟨r⟩ a.u. E a.u. ⟨r⟩ a.u.

3d 0.00 −0.055 555 555 555 10.500 000 000 −0.055 555 555 555 10.500 000 000
0.26 −0.128 471 359 504 5.449 216 8184 −0.146 974 205 177 6.894 926 1986
0.57 −0.251 571 681 618 4.986 228 7243 −0.269 235 578 841 6.727 277 2114
1.59 −0.411 853 426 848 5.127 318 4744 −0.432 795 177 458 6.729 277 3865

4d 0.00 −0.031 250 000 000 21.000 000 000 −0.031 250 000 000 21.000 000 000
0.26 −0.041 811 532 197 15.885 456 275 −0.038 490 481 788 17.852 091 651
0.57 −0.044 189 228 465 14.896 944 804 −0.040 240 022 616 16.883 522 700
1.59 −0.127 836 599 792 6.881 247 2011 −0.172 635 611 475 7.440 790 0868

5d 0.00 −0.020 000 000 000 34.500 000 000 −0.020 000 000 000 34.500 000 000
0.26 −0.024 569 869 745 28.278 727 512 −0.022 880 682 620 30.857 778 724
0.57 −0.025 611 985 197 27.021 828 122 −0.023 721 575 291 29.575 002 055
1.59 −0.037 461 999 111 18.248 819 233 −0.039 108 470 145 17.049 986 326

6d 0.00 −0.020 000 000 000 34.500 000 000 −0.013 888 888 889 51.000 000 000
0.26 −0.016 327 055 430 43.560 989 985 −0.015 360 981 734 46.717 692 906
0.57 −0.016 886 116 520 42.025 765 284 −0.015 837 354 470 45.132 637 791
1.59 −0.022 489 169 307 31.285 420 901 −0.023 341 455 972 29.854 962 236

7d 0.00 −0.010 204 081 633 70.500 000 00 −0.010 204 081 633 70.500 000 00
0.26 −0.011 667 991 818 61.812 020 47 −0.011 065 988 156 65.536 819 33
0.57 −0.012 004 198 432 59.997 674 38 −0.011 362 746 680 63.657 452 22
1.59 −0.015 168 052 460 47.209 127 992 −0.015 654 825 275 45.536 405 971

8d 0.00 −0.007 812 500 000 93.000 000 00 −0.007 812 500 000 93.000 000 00
0.26 −0.008 763 164 361 83.050 904 42 −0.008 363 446 047 87.340 123 04
0.57 −0.008 981 421 027 80.957 563 96 −0.008 560 845 234 85.170 841 06
1.59 −0.010 955 981 002 66.101 951 82 −0.011 258 294 889 64.170 188 267
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Figure 4. Energy and the expectation value ⟨r⟩ for the s-states of the hydrogen atom as a function of the width σ of the Gaussian
potential (2) with ω0 = 0.5 a.u., calculations were performed using the Lagrange Mesh Method. Figures (a) and (b) correspond to
rc = 2.50 Å while figures (c) and (d) refer to the case rc = 3.54 Å.

finite differences, in which case the error in the solution of the eigensystem is of order h4, here h being the
distance between two consecutive nodal points. For ω0 = 0.5 a.u., σ= 0.26 Å and rc = 3.54 Å, by using
h= 0.01, we obtained an accuracy of 9 decimal places in energy eigenvalues when they are compared with the
results calculated with the LMM. For l= 0 and l= 1, Lmax = 160, whereas for l= 2,Lmax = 200. Analogous
results are found for other values of ω0,σ, and Lmax and different values of l. For H@C60 the step size h= 0.01
provides results such that the rounding error does not affect the first 11 decimal digits. Another quantity that
can affect the accuracy of the eigenvalues is the quantum state to be calculated. For example, at fixed values
rc = 3.54 Å, ω0 = 0.5 a.u. and σ= 0.26 Å, in order to obtain eigenvalues with 8 decimal places of accuracy it
is necessary that Lmax = 150 a.u. and a grid with n= 15000 for states with l= 0, whereas for states with l= 1,
Lmax = 170 a.u. and n= 17000, and for l= 2 the optimal parameters are Lmax = 200 a.u. and n= 20000.
This shows that to calculate excited states, while maintaining the same accuracy of the previous energy levels,
it is necessary to increase the value of Lmax as well as n. Additionally, by increasing the value of Lmax and n the
agreement with the results of the LMM is in all digits.

When the FEM is applied, the agreement with the results of the LMM is in 8 decimal digits. It should be
mentioned that the MATHEMATICA 12.3 software package allows us to calculate the solutions of the
eigenvalue problem (4) as well. It can be easily done using the NDEigensystem command (based on the
FEM) which, in general, provides the smallest eigenvalues and eigenfunctions of the involved linear
differential operator on a certain finite region, Lmax ∼ 150. For the lowest states, in table 4 we display the
relative difference |EM−ELM|

|ELM| between the energy EM obtained with MATHEMATICA 12.3 and the
corresponding value ELM computed in the Lagrange-Mesh approach. Specifically, at fixed values of s-states
(l= 0) with parameters rc = 3.54, ω0 = 0.5, and σ= 1.59, by using a maximum cell measure of 0.001 the
optimal value of Lmax increases monotonically from Lmax = 30 at n= 13 (ground state) up to Lmax = 120 for
n= 6. The calculations were run in MATHEMATICA 12.3 on a personal laptop.

3 Here n denotes the principal quantum number.

10



Mach. Learn.: Sci. Technol. 4 (2023) 015024 H Olivares-Pilón et al

Figure 5. Energy and the expectation value ⟨r⟩ for the p-states of the hydrogen atom as a function of the width σ of the Gaussian
potential (2) with ω0 = 0.5 a.u., calculations were performed using the Lagrange Mesh Method. Figures (a) and (b) correspond to
rc = 2.50 Å while figures (c) and (d) refer to the case rc = 3.54 Å.

3.2. Numerical interpolation via an artificial neural network
Additionally, we trained a regression neural network to estimate the energies of the hydrogen atom for the 1s
state as a function of the center rc of the inverted Gaussian potential (2). It is worth mentioning that the
neural networks were trained and tested using the Neural Network Toolbox fromMatlab 2022a, which runs
on a computer with an Intel Core i7-2600 CPU (@3.40 GHz) and 16 GB of RAM. The training and testing
data are generated by the LMM. As is standard in artificial neural networks, we devoted 70% of the dataset to
training, 10% to validation, and 20% to testing. After training, the neural network can predict the
Lagrange-mesh results with not less than six significant digits which is the relevant domain in the present
non-relativistic framework. Despite we show solely the results for the Lagrange method in table 5, we also
performed the training of neural networks using the FEM and FDM data, respectively. In both cases, the
obtained results present the same six significant digits as those obtained with the Lagrange mesh method. A
plausible explanation is that all methods provide accurate energies with not less than 8 significant figures,
which always is over the accuracy that neural networks can solve for the dataset. Remarkably, our algorithm
takes 40 µs to calculate the energy for a given value of rc. For ω0 = 0.5 a.u. and σ= 0.26 Å, table 5 displays
the results obtained for the energy as a function of rc expressed as rc = λ r0 where r0 = 3.54 Å and λ is a
factor specified in the first column. As can be appreciated in table 5, there exists a critical value
rc ≈ 1.011 a.u. for which the energy of the system reaches its minimum value. In general, for excited states,
the energy presents maxima and minima as a function of rc.

In the present computations, the depth of the well was chosen as ω0 = 0.5 a.u.. For larger values of this
parameter, the confined hydrogen atom energy becomes more negative in complete agreement with the
results reported in [34]. When possible, in each of the tables, the obtained results in the present work are
compared with those presented by Lin and Ho [35]. As can be seen, the methods used in our study lead to an
improvement in the energy values reported previously.

In the sections where the results of each specific methodology are presented, the calculation conditions
are indicated. However, the reader may contact the authors for further information.
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Table 4. Relative error |EM − ELM|/|ELM| as a function of the quantum numbers n and l at ω0 = 0.5 a.u. Here EM is the energy obtained
with MATHEMATICA (finite element) whereas ELM corresponds to the result of the LMM. Results are given by the number followed by
the power of 10.

rc = 3.54 Å rc = 2.5 Å

n σ Å l= 0 l= 1 l= 2 l= 0 l= 1 l= 2

1 1.59 1.4(−10) 4.6(−10) 5.7(−10) 4.9(−10) 2.6(−10) 4.4(−10)
0.57 2.6(−10) 7.8(−10) 9.8(−10) 2.5(−10) 3.9(−10) 6.4(−10)
0.26 2.4(−10) 1(−9) 1.7(−9) 3.8(−10) 6.6(−10) 1.4(−9)

2 1.59 5.7(−10) 6.9(−10) 1(−9) 7.2(−10) 7.4(−10) 1.5(−9)
0.57 7.3(−10) 1.8(−9) 3.5(−9) 4.5(−10) 2.8(−9) 3.5(−9)
0.26 1(−9) 2.4(−9) 3.5(−9) 6.5(−10) 2.9(−9) 3.6(−9)

3 1.59 5.5(−10) 1.8(−9) 3.5(−9) 1.4(−9) 2.6(−9) 3.3(−9)
0.57 2.7(−9) 3(−9) 2.5(−9) 2.7(−9) 3.2(−9) 2.7(−9)
0.26 2.9(−9) 3(−9) 2.7(−9) 2.8(−9) 2.9(−9) 2.5(−9)

4 1.59 2.6(−9) 2.9(−9) 2.6(−9) 2.9(−9) 2.9(−9) 2.7(−9)
0.57 2.9(−9) 2.5(−9) 6.2(−9) 2.9(−9) 3.6(−9) 5.7(−9)
0.26 2.5(−9) 3(−9) 6.8(−9) 2.8(−9) 4.3(−9) 6(−9)

Table 5. Energies of the confined hydrogen atom for the 1s state as a function of the center of the inverted potential (2), rc . Here, ELM is
the energy calculated with the LMM and EAI is the energy with the trained neural network using as an input the Lagrange-Mesh values.
These results were obtained using the following parameters of the potential: ω0 = 0.5 a.u., σ= 0.4913287924027 a.u. and rc = λ r0 with
r0 = 6.6896304811752 a.u.

λ ELM EAI

1/10000 −0.542 088 077 914 −0.542 088 671
1/5000 −0.542 202 008 934 −0.542 202 015
1/1000 −0.543 121 063 114 −0.543 121 329
1/500 −0.544 288 919 456 −0.544 288 945
1/100 −0.554 393 891 488 −0.554 393 308
1/60 −0.563 834 032 583 −0.563 834 743
1/45 −0.572 373 271 619 −0.572 317 326
1/35 −0.582 815 298 146 −0.582 815 187
1/25 −0.603 110 319 312 −0.603 110 065
1/22 −0.613 278 713 190 −0.613 278 192
1/17 −0.638 659 560 757 −0.638 659 364
1/10 −0.705 251 046 859 −0.705 251 154
1/8.5 −0.722 411 069 471 −0.722 411 243
1/7.5 −0.731 076 180 441 −0.731 076 188
1/6 −0.732 174 699 082 −0.732 174 236
1/5 −0.717 486 035 423 −0.717 486 546
1/3.5 −0.655 478 372 832 −0.655 478 355
1/2.5 −0.581 245 674 651 −0.581 245 509
0.6 −0.516 590 710 000 −0.516 590 888
0.7 −0.506 188 282 257 −0.506 188 473
0.9 −0.500 704 580 760 −0.500 702 969
1.1 −0.500 071 154 498 −0.500 074 229
1.3 −0.500 006 755 585 −0.500 008 335
1.5 −0.500 000 614 285 −0.500 000 610
1.7 −0.500 000 054 036 −0.500 000 563

4. Conclusions

In the Born-Oppenheimer approximation, for the lowest states with angular momentum l= 0,1,2 the
energies and eigenfunctions of the hydrogen atom inside a C36 and C60 fullerenes are presented. The
confining barrier was modeled by an inverted Gaussian function w(r) =−ω0 exp[−(r− rc)2/σ2]. The
approximate solutions of the corresponding Schrödinger equation were determined by three different
numerical methods: (i) the LMM, (ii) the (fourth-order) finite difference and (iii) the FEM. As a
complementary tool, we use an artificial neural network to interpolate/extrapolate the results. In general, the
confined hydrogen atom becomes more bound with the increase of the width σ and the depth ω0 of the
Gaussian potential, for the two considered cases of rc.

Using the LMM accurate energies with not less than 11 significant figures were obtained. The optimal
values of the size of the mesh N and the scaling factor h depend on the state being studied as well as on the
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parameters of the confining potential w(r). Since this method is not completely based on a variational
principle, we must point out that the computed energies are not necessarily greater than or equal to the
(unknown) exact ones. However, in all known cases where the Lagrange mesh results are stable with respect
to the variation of N and h, like in the present study, it turns out that it converges rapidly and generates
simple highly accurate solutions.

The FDM is a suitable method for solving the radial Schrödinger equation (14). In the present work, we
used a fourth-degree approximation for the kinetic energy operator (18). The accuracy of the eigenvalues
depends strongly on the corresponding step size h (equation (19)). In particular, using a fourth-degree
approximation the error in the kinetic energy operator (equation (18)) is of order h4. The calculations were
performed in a code written with double precision in MATLAB. It should also be noted that this method, like
the LMM, is not based on the variational principle.

In the case of the FEM, precise energies (always from above the exact ones) can be calculated by
simultaneously increasing Lmax, the number of elements in which the interval [0, Lmax] is divided and the
degree of the interpolating polynomials. Moreover, this method allows us to deal with problems in higher
spatial dimensions with regular and irregular boundaries, which is not so easy to implement in the
Lagrange-mesh and FDMs.

Finally, the artificial neural network is computationally a faster efficient tool to compute the spectra.
Nevertheless, for the training stage, it requires to know in advance accurate results in several points on the
space of parameters. In combination with the Lagrange-mesh or the FDM it significantly reduces the overall
computational time, although with less accuracy. By means of the methods used in the present study,
energies were obtained with higher accuracy than those reported in the literature. In future works, we plan to
establish in a more systematic manner the implementation of artificial neural networks in the study of other
physically relevant atomic and molecular systems.
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