
____________________________________________________________________________________________ 
 
*Corresponding author: Email: barinova@research.haifa.ac.il;  

 

 British Journal of Environment & Climate Change   
4(4): 423-443, 2014 

                                             ISSN: 2231–4784 

 
                              SCIENCEDOMAIN international 

       www.sciencedomain.org 

 

 

Climate Impact on Freshwater Biodiversity: 
General Patterns in Extreme Environments of 

North-Eastern Siberia (Russia)  
 

Sophia Barinova1*, Viktor Gabyshev2 and Olga Gabysheva2 
 

1
Institute of Evolution, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, 

3498838, Israel.  
2
Institute for Biological Problems of Cryolithozone Sb Ras, 41 Lenin Avenue, Yakutsk 

677980, Russia. 
 

Authors’ contributions 
 

This work was carried out in collaboration between all authors. Author SB designed the 
study, performed the statistical analysis, wrote the protocol and wrote the first draft of the 

manuscript. Authors VG and OG managed the analyses for the study. All authors read and 
approved the final manuscript. 

 
Article Information 

 
DOI: 10.9734/BJECC/2014/9530 

 
 
 
 

Received 15
th

 February 2014 
Accepted 24

th
 July 2014 

Published 17
th

 November 2014 

 
 

ABSTRACT 
 

Aims: The aims of the current study are to reveal the response of high latitude riverine 
planktonic algal communities in northeastern Siberia to extreme climatic conditions of its 
habitats. 
Study Design: We implemented diverse statistical methods, which represent some new 
approaches in freshwater algal diversity analysis. 
Place and Duration of Study: Institute of Evolution, University of Haifa, Israel, Institute 
for Biological Problems of Cryolithozone SB RAS, Russia, between June 2008 and 
January  2014. 
Methodology: We collected 800 samples of phytoplankton from 400 sites of 12 
northeastern Siberian rivers in gradients of climatic and chemical variables that we 
analyzed. New indices - Geo-associated and Dynamic Habitat Index were included in this 
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analysis. Statistical methods for comparative floristic analyses were used for calculating 
the similarity of algal communities among the sampling stations. Multiple regression 
stepwise statistical analysis on phytoplankton including chemical and climatic variables 
data was performed. Species diversity in algal communities and their environmental 
variables relationships were calculated.  
Results: As a result, 1283 species (1637 taxa of species and infraspecies) from six 
taxonomic divisions were identified in phytoplankton communities. Species richness as a 
whole increased to the north. Abundance and biomass were highly correlated. Two types 
of phytoplankton communities were identified: a southern community with increasing 
diatoms and a northern group with decreasing diatoms to the north. Diatoms prevailed 
but were replaced by green algae in high mountains or by green and Chrysophyta algae 
and Cyanobacteria in the Arctic. We revealed major variables that considered stimulating 
or stress factors with helps of statistical prorgams. 
Conclusion: Statistical analyses of phytoplankton in 12 large rivers revealed an increase 
in species richness to the north with community structure changing under stimulation of 
air temperature, ice-free periods, humidity, and trophic variables were stimulants and 
water transparency and speed flow were considered stress factors. 
 

 

Keywords: Freshwater algae; diversity; ecology; climate adaptation; Northern Siberia.  
 

1. INTRODUCTION 
 
Relationships between freshwater algal biodiversity and environmental conditions can be 
determined as adaptation levels between the species and the community as a whole. Bio-
indication and related integrative methods for aquatic environment sustainable assessment 
are based on the principle of congruence between community composition and the 
complexity of environmental factors. In any case, freshwater biodiversity is still a much 
underestimated component of global biodiversity [1] but can be estimated using diverse 
methods to measure major climatic variables [2,3]. However, there are still many problems in 
defining the role of climatic factors in predicting the community’s response to environmental 
changes. In an analysis of freshwater algae diversity we encountered certain difficulties. 
First, it is difficult to determine the scope of communities involved, as well as to define the 
scope of research tasks and the relevance of operative approaches [4]. The effects of major 
climatic variables, such as temperature and altitude, on freshwater algae distribution is 
widely discussed in recent literature [5-13] but still remains a problem. We planned this study 
because there is a lack of detailed distributional information for most freshwater organism 
groups and an absence of distribution-climate models; therefore, studies should be aimed at 
increasing our knowledge about these aspects of the ecology of freshwater organisms [14]. 
We know only one relevant study for bio-diversity assessment over large gradient of latitude 
in South America [15] but it has been do on the lake secosystems. Many studies about 
planktonic algal communities in boreal lakes has been do for revealing gamma-diversity 
response to climatic variables [16] and importance of phytoplankton studies [17] with 
conclusion that diversity is the best predictor for resource use efficiency of phytoplankton 
communities across considerable environmental and climatic [18] gradients. Riverine 
communities studies under Far East climatic gradient up to now has been in initial stage [19]. 
 
The freshwater algal communities’ comparisons experience allows us to use a productive 
approach when there are visible climatic responses in the ecoregional, riverine basin floras, 
and infra-specific generalization levels for comparison. 
 



 

The aims of the current study are to reveal the response of high latitude riverine planktonic 
algal communities in northeastern Siberia to extreme climatic 
we tried to implement diverse statistical methods, which represent some new approaches in 
freshwater algal diversity analysis. 
 
2. MATERIALS AND MET
 
2.1 Sampling and Laboratory Studies
 
Samples for the study were collected in the summer low water season of June
– 2011 from 12 large East Siberian Rivers: Anabar, Olenek, Indigirka, Yana, Kolyma, Aldan, 
Amga, Vilyui, Lena, Vitim, Olekma, and Chara (Fig. 1). The study areas are located on 
territories of Yakutiya, Buryatiya, Zabaykalskiy
Irkutskaya Oblast. 
 

 
Fig. 1. Map of the studied (yellow) rivers in north

 
A total of 303 water samples and 800 phytoplankton samples were collected for 
hydrochemical and algological analyses, respectively. Some samples were collected from 
the littoral and others from the fairway of the rivers (from the 0
 
Samples for chemical analysis were taken in 2.5 L dark glass bottles and transported to 
laboratory during two days in an ice box with 4º
standard methods set out in [20,21]. Gas regime components (CO
Secchi disk depth, were determined in situ. Concentrations of other chemicals were 
determined in the laboratory. 
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One and a half liter water samples for phytoplankton quantitative analyses were 
concentrated on Sartorius membrane filters (pore size 1.2 μm) by pressure filtration, using 
the phytoplankton concentrator of our own design [22]. Samples for qualitative analyses 
were collected with an Apstein plankton net (SEFAR NITEX filter fabric, mesh size 30μm) 
and fixed in 4% neutral formaldehyde solution. Microscopy was performed with an Olympus 
BH2 microscope under magnification 600 – 1000. Algal cells were counted in a Nageotte 
counting chamber (volume 0.01 cm

3
). Biovolumes of different taxa were calculated by 

approximating the cell shape to simple geometrical shapes, using our own linear 
measurements of cells. The volume to specific weight conversion factor was assumed to be 
a unity. Diatom shells were studied in 2500 permanent slides with Bio mount media. No less 
than 100 cells of each abundant species were calculated from each quantitative sample.   
 

2.2 Taxonomic Analysis and Functional Classification   
 
For taxonomic identification a common international handbook series were used. Modern 
species’ names in our work come from Algaebase [23], employing the common system 
nomenclature derived from Cavalier-Smith [24]. 
 
The mean phytoplankton community cell size was estimated from the ratio between total 
biovolume and total abundance according to [25]. 
 
The Shannon’s diversity index [26], which reflects the degree of abundance equality among 
the species in the community and is correlated to the entropy of the ecosystem [27], was 
calculated as:   
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Where: H – Shannon species diversity index, bit, N – common individuals abundance, s – 
species number; ni – the number of individuals in each species.  
 

2.3 Statistical Analysis  
 
Statistical methods for comparative floristic analysis were used for calculating the similarity 
of algal communities among the sampling stations on the basis of Sørensen’s similarity 
indices that automatically calculated with GRAPHS Program [28].  
 

Statistical analysis of correlation between species diversity and major climatic condition 
variables was calculated by distance-weighted least squares using the Statistica 7.1 
Program. 
 
Multiple regression Stepwise statistical analysis on phytoplankton, including chemical and 
climatic variables’ data, was performed via the Statistica 7.0 software in order to determine 
the variables with strongest influence on the algal communities in studied rivers. 
 
2.4 Description of Study Site   
 
Eastern Siberia is the Asian territory of the Russian North-East, from the Yenisei basin to the 
Chukotsky peninsula [29]. Our study area with a large amplitude of latitude, altitude, 
temperature, and precipitation range [30] (Fig. 1) is bounded on the north by seas Laptev 
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and East Siberian, on the west by the watershed of the Central Siberian Plateau, from the 
south by the mountain plateau of Stanovoy Ridge, from the southeast by the Yudoma-
Maisky highlands and southern spurs of the Verkhoyansk Range, and from the east by the 
Kolyma Range [31]. Studied rivers are from the Lena 608 and Kolyma 609 ecoregions in the 
Freshwater Ecoregions of the World (FEOW) [32].  
 

The territory of the region is represented by all forms of relief: mountains, plateaus, 
intermountain valleys (basins) and lowlands, and are distributed over two natural geographic 
zones – arctic and subarctic, and three natural zones - tundra, forest tundra and taiga, and 
mountain landscapes. Eastern Siberia is characterized by almost universal distribution of 
permafrost - continuous (integral) in the northern latitude of Vilyui River and intermittent in 
the southern half of the area. Power permafrost in the central part of the region is 350 – 450 
m, the maximum depth found in the river basin Olenyok and reach 1,500 m [33]. In the south 
of the region power permafrost decreases; there are more or less significant areas devoid of 
permafrost (taliks) [34]. A climatic condition of Eastern Siberia is largely determined by its 
geographical location within the Asian continent and is protected by mountains from the 
Atlantic and Pacific Oceans. The main features of the climate of Eastern Siberia – a clear, 
severe, with little snow, stable and long winters and fairly dry, short, and hot summers. The 
studied water bodies represent twelve of the largest rivers of Eastern Siberia and belong to 
the basin of the Arctic Ocean. Our study area extends in a longitudinal direction of 106º53'E 
to 160º58'E, and in latitude – from 56º13' to 73º10'N. The total length of all studied rivers 
sites reaches more than 17,000 km. 
 

2.5 Floristic Materials 
 

The regional freshwater algal flora is represented in the main monographs of Vassilyeva-
Kralina et al. [35,36] and Vasilyeva et al. [37]. Our papers are focused on the floristic 
diversity and community structure of phytoplankton in twelve major rivers of Eastern Siberia 
[38-48]. Freshwater algal diversity and ecology under anthropogenic impact study are 
represented in [49-52]. 
 

2.6 Environmental Data  
 

Environmental and Dynamic Habitat Index, DHI [53] data we compiled from the Institute for 
Biological Problems of Cryolithozone SB RAS, Yakutsk meteorological data base (see 
Appendix as supplementary file). The DHI index is an important variable which correlated 
with the latitude of the sampling sites is calculated as a result of landscape variation and 
sensitivity to climate change for the North America from central part of U.S.A., Canada and 
to the Polar. Climatic parameters have been taken from http://worldclim.org/. Geo-
association classes of the river basin placement are created by us as: 
 

1 – Large transitional rivers; 
2 – Rivers flows mainly in the latitudinal direction; 
3 – River located in the south of the region; 
4 – Rivers of the central part of the region; 
5 – Most of the river basin is located north of the Arctic Circle; 
6 – River basin is located north of the Arctic Circle. 
 

3. RESULTS  
 

We revealed 1,283 species (1,637 taxa of species and infraspecies) of algae and 
cyanobacteria in 800 samples collected during 2008 – 2011 from 12 rivers and 400 sampling 
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diverse algal communities even in each studied river.  
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The elements that defined water quality such as ammonia (0.020
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), and BOD (0.04

be interpreted as unfavorable for survival of algae. 
 
Therefore, we can analyze major biological variables such as species richness, abundance, 
and biomass changing over stations in a northern direction to reveal algal preferences in 
extreme climatic zones. 
 
Climatic characteristics of the region form the system of complex interactions. Precipitation 
correlated with DHI (Pearson 0.60, 
also associated with the number of days of open water, that is, w
light intensity (Fig. 2). Maximal values of rainfall are in the southern region, where the ice
free period is longer as well as in the northern sites where there are more days of open 
water. The DHI index is an important variable wh
sampling sites. It can be seen that DHI is lower for the northern habitats (Fig. 3).

 

Fig. 2. Plot of precipitation distribution over the ice
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be interpreted as unfavorable for survival of algae.  

Therefore, we can analyze major biological variables such as species richness, abundance, 
and biomass changing over stations in a northern direction to reveal algal preferences in 

Climatic characteristics of the region form the system of complex interactions. Precipitation 
correlated with DHI (Pearson 0.60, P<.01), decreasing to the north, but their abundance is 
also associated with the number of days of open water, that is, with the temperature and 
light intensity (Fig. 2). Maximal values of rainfall are in the southern region, where the ice
free period is longer as well as in the northern sites where there are more days of open 
water. The DHI index is an important variable which correlated with the latitude of the 
sampling sites. It can be seen that DHI is lower for the northern habitats (Fig. 3). 

 
 

Fig. 2. Plot of precipitation distribution over the ice-free periods (Avrg_ice_free) and 
Dynamic Habitat Index (DHI) 

 
 
 
 

): 423-443, 2014 
 
 

428 
 

prevail in six taxonomic 
146 taxa in different stations and represent 

Studied rivers have mostly flow in a northerly direction. They are covered with ice most of 
) with ice free days from 112 (Anabar) to 149 

C. Speed of 
, and water transparency from 0.04 to 4.50 m. 

452 mg L
-1

), well 
-1

. Nutrients 
0.36 mg L

-1
), Si (0.4 

) in quantity enough for algal biomass development. 
), nitrites (0 – 

) reflect wide range of water quality but cannot 

Therefore, we can analyze major biological variables such as species richness, abundance, 
and biomass changing over stations in a northern direction to reveal algal preferences in 

Climatic characteristics of the region form the system of complex interactions. Precipitation 
.01), decreasing to the north, but their abundance is 

ith the temperature and 
light intensity (Fig. 2). Maximal values of rainfall are in the southern region, where the ice-
free period is longer as well as in the northern sites where there are more days of open 

ich correlated with the latitude of the 
 

free periods (Avrg_ice_free) and 



 
 
 
 

British Journal of Environment & Climate Change, 4(4): 423-443, 2014 
 
 

429 
 

 

 
 

Fig. 3. Distribution of DHI over latitude of studied habitats 
 
In rivers, species richness increased to the north excluding the southernmost river Vitim. 
Diatoms usually increased to the north, but in the middle of the studied area, they were 
replaced by Chlorophytes (Amga, Vilyui, Kolyma). Chrysophyta species number increased to 
the river mouth in the Indigirka River and changed of Cyanobacteria in the northernmost 
area of the river Anabar. Abundance and biomass of phytoplankton varied widely in the 
lowermost part of the northern Anabar River (58.9 cell L

-1
; 0.0002 mg L

-1
) and were higher in 

the largest rivers: Lena, Kolyma, Aldan, and Vilyui (more than one million cells per liter and 
about one mg L

-1
). That means that the strongest climatic impact can be seen in the northern 

area rivers where the environment is unfavorable for algal communities. This expectation 
can be confirmed by data about community complexity. The average cell volume is the 
lowest in the northern stations but in the largest rivers it is highest, which correlated with the 
Shannon index of complexity: up to 5.76 in the rivers Lena, Vilyui, Vitim, and Kolyma. The 
average cell volume has a negative correlation with Shannon index in the studied 
communities and therefore both variables reflect the community’s structure complexity 
fluctuation under climatic impact. 
 
Abundance and biomass of phytoplankton usually have positive correlation (Pearson 
coefficient 0.30 – 0.94) with statistical significance (P = .04 – 2 10

-8
). Each river can be 

characterized by its own productivity variables, but we revealed some tendencies in 
community structure over latitude. So, in the southernmost rivers Vitim, Olekma, Chara, 
Amga, and Aldan, which belong to the Lena River tributaries, diatoms prevail in abundance 
and biomass (Fig. 4). Northern rivers of the Lena Basin – Lena and Vilyui, changed 
abundance from diatom to diatom-Chlorophyta but in biomass diatoms still prevail. Other 
studied rivers in the north have more structural complexity of its communities. Usually diatom 
replaced to diatom-Chrysophyte-Cyanobacteria communities to the north. It is remarkable 
that in the Olenek and Anabar rivers whole basins of which are located above the Arctic 
Circle, the role of Chlorophyta and Chrysophyta algae is increased in communities to the 
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mouth (Fig. 5). In the Olenek communities increased also cyanobacteria in abundance and 
biomass (See Appendixas supplementary file). The major tendency in the communities 
increase in abundance and biomass of phytoplankton in the north direction in most rivers, 
except in the Vilyui, Olekma and Aldan where these parameters were slightly decreased, 
and the Anabar River where there are significant decreases in abundance and biomass. 
Usually this tendency is correlated with species number except in the Anabar River.  

 
 

Fig. 4. Distribution of species richness in communities over latitude for typical 
southern rivers – the Vitim River 

 
Fig. 5. Distribution of species richness in communities over latitude for typical 

northern rivers – the Anabar River 
 

Therefore, we chose major community variables (species richness, abundance, biomass, 
average cell volume) to calculate the relationships with environmental data from (See 
Appendixas supplementary file). In the first step of calculation we implemented the multiple 
regression stepwise statistical analysis. (Table 1) show that the most important variables are 
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(in Step 1 column) temperature, ice
richness has been influenced by climatic variables 
free period. Temperature and sunlight stimulate algal abundance and biomass whereas of 
water transparency and silica suppress algal development. Communities have been 
enriched by large-celled species and have more compl
low transparency as can be seen in calculating the Biovolume and Shannon index H. Diatom 
and Chrysophyte algae were stimulated by temperature. Ammonia was important for 
Cyanobacteria, Chlorophyta, 
usually suppressed algal communities. Light stimulated cell abundance in diatoms; 
euglenoids were most abundant in temperate, mineralized, and polluted waters with low 
transparency, but phosphorous concentrations wer
Algal biomass was stimulated by the light in green algae and by temperature and water 
pollution in euglenoids, whereas in diatoms high air temperature had negative influence. 
 
Species richness as a whole increases wi
Distance-weighted least squares correlation shows that species richness as a whole 
increases with decreasing DHI to the north as well as with the number of the open
days (Fig. 7).  
 
Fig. 8 shows the trend of increasing the number of species over the site position. Species 
richness is higher in the river basin in the north compared to the habitat coordinates. 
Precipitation plays an important role in increasing species richness in plankton communities, 
and in how the multi-specific communities form under high rainfall at low latitudes and under 
lower precipitation at high latitudes (Fig. 9).
 

Fig. 6. Distribution of species richness in phytoplankton communities of studied 
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(in Step 1 column) temperature, ice-free days, trophic variables, and flow speed. Species 
richness has been influenced by climatic variables – air temperature, precipitation, and ice
free period. Temperature and sunlight stimulate algal abundance and biomass whereas of 
water transparency and silica suppress algal development. Communities have been 

celled species and have more complexity in the low mineralized water with 
low transparency as can be seen in calculating the Biovolume and Shannon index H. Diatom 

algae were stimulated by temperature. Ammonia was important for 
, Dinophyta, and Euglenophyta whereas water transparency 

usually suppressed algal communities. Light stimulated cell abundance in diatoms; 
euglenoids were most abundant in temperate, mineralized, and polluted waters with low 
transparency, but phosphorous concentrations were important for green algae abundance. 
Algal biomass was stimulated by the light in green algae and by temperature and water 
pollution in euglenoids, whereas in diatoms high air temperature had negative influence. 

Species richness as a whole increases with increases of water temperature (Fig. 6). 
weighted least squares correlation shows that species richness as a whole 

increases with decreasing DHI to the north as well as with the number of the open

f increasing the number of species over the site position. Species 
richness is higher in the river basin in the north compared to the habitat coordinates. 
Precipitation plays an important role in increasing species richness in plankton communities, 

specific communities form under high rainfall at low latitudes and under 
lower precipitation at high latitudes (Fig. 9). 
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Fig. 6. Distribution of species richness in phytoplankton communities of studied 
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Fig. 7. Distribution of species richness in phytoplankton communities of studied 
rivers over gradient of DHI and ice-free period 

 

 
 

Fig. 8. Distribution of species richness in phytoplankton communities of studied 
rivers over latitude and gradient of the river basin placement 
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Table 1. Multiple regression stepwise statistical analysis results for the phytoplankton communities of the north-eastern 
Siberia Rivers. Abbreviations are gives as in appendix 

 

Depen-dent variable Step 1 Step 2 Step 3 Step 4  Step 5 Step 6 Step 7 Step 8 
No. of Species T_dry; Ice_free; 

T_max; Precip 
0.434*** 

T_dry; T_max; 
Precip0.372*** 

T_dry; T_max 
0.304*** 

T_dry 
0.244*** 

- - - - 

Abundance Secchi;  
Si;T_wat 0.267** 

T_wat;  
Si 
0.220** 

Si 
0.199* 

T_wat 
0.165* 

T_wat 
0.141* 

- - - 

Biomass Secchi; Ice_free 
0.264***  

T_max 
0.160** 

T_max 
0.138** 

T_max 
0.111** 

- - - - 

Bio-volume Ice_free;  TDS;  
Secchi 0.161** 

- - - - - - - 

Cyano-phyta Ptot; NH4 
0.394*** 

Ptot;  
PO4; NH4; Si 
0.372*** 

Ptot;  
PO4;  
NH4;  
Alt 
0.348*** 

Ptot; PO4; 
T_dry 
0.298*** 

Ptot; 
T_dry; 
Alt 
0.260*** 

T_dry; 
Alt 
0.217*** 

T_dry; 
Alt 
0.184*
** 

T_dry 
0.091*
** 

Bacilla-riophyta T_mean_D; 
T_dry; Secchi 
0.488 **** 

T_mean_D;  
T_dry 0.362**** 

T_mean_D 
0.234**** 

- - -  - - 

Chloro-phyta Secchi;Ice_free;   
Si; T_wat; T_dry;  
NH4 0.712***** 

T_wat; NH4; Si; 
Secchi 
0.446**** 

T_dry; T_wat; 
NH4;  
Si 
0.382**** 

T_dry; 
T_wat 
0.318**** 

T_dry; 
T_wat 
0.269***
* 

T_dry 
0.152*** 

- - 

SpChlo/ 
SpCyano 

T_wat 
0.199*** 

T_wat;  
T_ min 
0.175*** 

T_wat;  
T_ min 
0.098*** 

- - - -  - 

Dinophyta NH4; Si;  
pH .329*** 

Si; pH 0.297*** CO2; Si; pH 
0.254*** 

CO2; Si 
0.169*** 

CO2  
0.096** 

- - - 

Chryso-phyta T_dry 0.399*** T_wet; T_dry 
T_max 0.322*** 

T_dry 0.288*** T_dry 
0.252*** 

T_wet 
0.211*** 

T_wet 
0.152*** 

- - 

Eugleno-phyta NH4 0.181** NH4 0.157** NH4 0.126** NH4 
0.091** 

 -  - - - 
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Table 1 continued…………………. 
N-Cyano-phyta - - - -  -  - - - 
N-Dino-phyta - - - -  -  -  - - 
N-Chryso-phyta - - - -  -  -  - - 
N-Bacilla-riophyta Ice_free; Secchi 

0.248*** 
- - -  -  -  - - 

N-Eugleno-phyta BOD; T_wat;  
Flow; TDS; 
Secchi0.277*** 

BOD; Flow 
0.191** 

BOD; T_wat; 
Flow 
0.162** 

BOD 
0.102** 

- - - - 

N-Chloro-phyta Ptot 0.164** Ptot;  
T_wat 
0.147** 

Ptot 
0.078** 

- - - - - 

B-Cyano-phyta Si; T_wat 0.192* T_wat 
0.159* 

- - - - - - 

B-Dino-phyta - - - - -  - -  - 
B-Chry-sophyta - - - - -  - - - 
B-Bacilla-riophyta T_max 0.152 *** - - - - - - - 

B-Eugle-nophyta BOD; T_wat;  
Flow 0.238** 

BOD; T_wat 
0.218**  

BOD; T_wat 
0.197** 

BOD; 
T_wat 
0.149** 

BOD 
0.079** 

- - - 

B-Chlo-rophyta Flow; Secchi; 
Ice_free 0.203** 

- - - - - - - 

Shannon H Ice_free; Secchi 
0.804**** 

Ice_free 
0.798**** 

- - - - - - 

Note: Negatively influenced variables are bold; **, ***, **** = statistically significant at P < .01, P < .001; P < .0001 respectively 
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Fig. 9. Distribution of species richness in phytoplankton communities of studied 
rivers over gradient of DHI and precipitation 

 
Abundance and biomass of phytoplankton in studied rivers correlate, but are not connected 
directly to each other as seen in (Fig. 10) where an upward trend in both variables in higher 
latitudes are seen with the change in plankton type. (Fig. 11) reflects the barely noticeable 
impact of the illumination on the productive variables of phytoplankton, but it is clear that a 
change in sunlight intensity is a function of ice-free periods; therefore we can see three types 
of communities. 
 
Diatom biomass as the main part of the studied communities, formed in multi-specific 
communities, thrived in low-light conditions associated with fewer days in the open ice period 
(Fig. 12). It is remarkable that the revealed diatom biomass distribution is comparable to 
precipitation distribution (Fig. 2) in studied regions. This means that climatic variables, such 
as precipitation, and associated play major roles in increasing species richness and biomass 
of phytoplankton. At the same time, there is a tendency for the number of species to 
increase with the growth of the biomass of diatoms under well-lit conditions (Fig. 13).  
 
As can be seen from the distribution of species composition in the typical south and typical 
north rivers (Figs. 4, 5), except the dynamics of diatoms, an important distinctive role in the 
northern habitats were made up of green algae and cyanobacteria; we therefore calculated 
this ratio for the studied communities. Precipitation increases with altitudes of habitats and 
(Fig. 14) shows that the number of cyanobacteria in the mountainous communities 
decreases, giving more benefits to the green algae. With increasing latitude and rainfall, the 
role of blue-green algae also decreased in comparison to the greens (Fig. 15).  
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Fig. 10. Distribution of cell abundance in phytoplankton communities of studied rivers 
over the gradient of its biomass and the river basin placement 

 

 
 

Fig. 11. Distribution of species richness in phytoplankton communities of studied 
rivers over the gradient of its biomass and ice-free period 



 

 
Fig. 12. Distribution of diatom biomass in phytoplankton communities of studied 

rivers over gradients of species richness and ice

Fig. 13. Distribution of species richness in phytoplankton communities of studied 
rivers over diatom biomass and ice

British Journal of Environment & Climate Change, 4(4):

Fig. 12. Distribution of diatom biomass in phytoplankton communities of studied 
radients of species richness and ice-free period 

 

 
 

Fig. 13. Distribution of species richness in phytoplankton communities of studied 
rivers over diatom biomass and ice-free periodgradient 
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Fig. 12. Distribution of diatom biomass in phytoplankton communities of studied 

Fig. 13. Distribution of species richness in phytoplankton communities of studied 
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Fig. 14. Altitude, precipitation and Chlorophyta/Cyanobacteria ratio relationships in 
the studied rivers 

 
 

Fig. 15. Chlorophyta/Cyanobacteria ratio and precipitation relationships over the 
latitude of the studied rivers 
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4. DISCUSSION 
 
Earlier we discussed the system of organizing the data to analyze the diversity of freshwater 
algal communities [4], which was hierarchical and limited at the top level of the river basin. 
Here, we used a new approach in which the data are combined at the regional level, thus 
increasing the level of generalization. Another new approach in our materials was to use not 
only hydrochemical but also regional climate data. We have also expanded the range of 
statistical analysis software with Program Graphs and modern version of Statistica.  
 
We chose the same type of community that is only a summer phytoplankton of major rivers; 
the current of these major rivers predominantly ran from a south-to-north direction, which 
eliminated non-climate-related fluctuations. We analyzed a large number of samples from 
400 sites resulting in the identification of 1283 species (1637 taxa of species and 
infraspecies) in phytoplankton communities, which is consistent with the Willis pattern [54], 
pointing to the completeness of the identified material. The studied rivers are mostly alkaline, 
ice-covered about half of the year with an average water temperature in summer from 3.8 to 
23ºC and have no limitation for algal biomass development. We included environmental 
variables from two new indices: The DHI index [48] which strongly decreased with latitude, 
and the Geo-association index that we created for the river basin placement characteristic.  
 
As a result of statistical programs applied to such large data numbers, our analysis shows 
the relationships between biological and climate-related variables. We revealed air 
temperature, ice-free periods, trophic variables, and flow speed as major variables that 
influenced phytoplankton communities. In contrast, water temperature was proposed as the 
major factor that influenced freshwater diversity [55] and therefore could be used as an 
indicator of global climate change [14], which wasn’t included as an important variable in the 
studied Arctic rivers. Rivers in the north-eastern Siberia have two types of phytoplankton 
communities: southern with increasing diatoms to the north and northern with decreasing 
diatoms to the north. Species richness as a whole increased to the north and correlated with 
air temperature, precipitation, and ice-free periods. It is very interesting and non-trivial result 
which is invisible when only diatom communities have been studied in the climatic gradient 
[12] where diversity represents only one taxonomic group, such as diatoms [56]. In the 
Caucasian Mountains and Golan Heights freshwater communities we revealed a similar 
dynamic in community structure with decreases in diatoms in high-altitude habitats [9,10], 
which is similar to the Himalayas [56] with increases of Chlorophyta species [12]. At the 
same time anthropogenic factors also regulate the freshwater algal community structure and 
the distribution over the climatic gradient [11,12]. But our approach in this study suggested 
the removal of influence of human activities because the selected region is poorly populated 
and the rivers are large. Studies like this used some new approach that compared data in 
respect of sampling point latitude and was doing in first time. Whereas general patterns of 
diversity and productivity in aquatic communities of the lakes are rather developed [52], the 
riverine phytoplankton is poorly studied in hard climatic gradient. Our results reflect the same 
diversity-productivity pattern as for a large sequence of lakes [15,57] in climatic gradient.   
 
5. CONCLUSION 
 
Our study conclusions reveal strong environmental stress in high altitude and high latitude 
climatic conditions. Diatoms in both cases are replaced by green and red algae (in high 
mountains) or by green and Chrysophyta algae and Cyanobacteria (in the Arctic). That 
allows us to conclude that for climatic impact assessments on freshwater algal diversity can 
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be studied the multidivisional communities under large amplitude climatic gradients. A 
multidivisional approach helps identified factors that regulated freshwater community 
dynamics over a climatic gradient, such as altitude [10] or latitude (present study), especially 
in the northern regions [14]. Usually, the assessment and prediction of freshwater diversity 
dynamics indicate water temperature as a major regulating factor [14,15,57]. But our 
analysis of large based algal communities and environmental variable relationships revealed 
the importance of other climatic related factors such as latitude, altitude, ice-free periods, air 
temperature, and humidity. These factors are stimulated in phytoplankton communities, 
while water transparency and flow speed are stress factors. Water temperature, on the 
contrary, is not revealed as an important regulating factor in the distribution of freshwater 
phytoplankton communities.  
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