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ABSTRACT 
 

The hydrology and water quality of a stream or reservoir can be affected due to rapid 
urbanization and land use change in its watershed. Climate change, if it occurs, is likely 
to have additional impacts on hydrology and water quality of the watershed system. In 
this study, a watershed model WARMF (Watershed Analysis Risk Management 
Framework) was applied to the Saugahatchee Creek Watershed which includes two 
stream branches that were listed on State of Alabama’s 303(d) list of impaired water for 
nutrients and organic enrichment/dissolved oxygen. WARMF model for the 
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Saugahatchee Creek Watershed was developed and model calibration and validation 
were performed. The model was then used to investigate hydrologic and water quality 
response to two different land use scenarios (LU 2009 and LU 2030) and four statistically 
downscaled future climate scenarios derived from Canadian Global Coupled Model 
(CGCM3) and Hadley Centre Coupled Climate Model (HadCM3). Temperature, dissolved 
oxygen, total nitrogen, total phosphorus, and algal concentration were the water quality 
parameters simulated along with flow. Based on monthly average of daily predicted 
values, the effect due to land use change was not significant except for nutrient 
concentration. The monthly average of daily total phosphorus concentration for LU 2030 
is predicted to increase up to 72% more than baseline (LU 2009) under past climate 
conditions (1981–2010). Based on model results, the monthly average of daily surface 
water temperature is predicted to rise for all future climate scenarios. The monthly 
average of daily flow is predicted to increase corresponding to CGCM3 (annual average 
increase of 88%) and decrease corresponding to HadCM3 scenarios (annual average 
decrease of -49%). Accordingly, nutrient concentration is expected to decrease 
corresponding to CGCM3 and increase corresponding to HadCM3 scenarios. DO 
concentration are predicted to fall up to 2.3 mg/l (monthly average), especially in summer 
for the four climate scenarios. Combined land use and climate change scenarios cause 
the increase in nutrient concentrations for future land use and climate scenarios (e.g., 
annual TP from 0.082 mg/l for the baseline to 0.203 mg/l for HadCM3 A2 20s scenario). 
Chlorophyll-a concentration during the growing season is expected to increase to 25.8 
and 26.3 μg/l under HadCM3 A2 and B2 scenarios due to combined effect, respectively, 
in comparison to 18 μg/l for the baseline (1981–2010 and LU2009). The results of this 
study can be incorporated into watershed management and planning strategies. 

 
 
Keywords: Hydrology; water quality; land use change; climate change; Saugahatchee; 

WARMF. 

 
1. INTRODUCTION 

 
During the recent years, rapid urbanization has led to massive land use changes, pervious 
forest soils have been reduced and industrial and residential areas have been increased. 
Similarly, the atmospheric concentration of greenhouse gases is believed to be increasing, 
thereby leading to climate change. Climate change, if it happens, will cause increase in 
temperature, evaporation, evapotranspiration, precipitation variability and extremes [1]. 
These alterations will change the hydrological behavior of watershed ecosystem in physical, 
chemical, and biological terms. The potential effects of land use and climate change are not 
limited to quantity; it can have serious impacts on water quality of the streams in the 
watershed. These changes will further affect water quality in downstream lakes and 
reservoirs that may alter fish habitat and have an effect on indigenous fish populations [2-5]. 
In this study, we utilized the Watershed Analysis Risk Management Framework (WARMF) 
[6,7] to develop a region-specific modeling framework to systematically assess the impact on 
flow and water quality in streams and reservoirs of the Saugahatchee Creek Watershed 
using future land use and future climate scenarios as model inputs. 

 
The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report 
summarized that the linear trend over the last 50 years is warming of 0.13 (0.10–0.16) ºC 
per decade, nearly twice temperature increase for the last 100 years, and it is projected to 
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further increase by 0.2ºC per decade for the next two decades [8]. The IPCC [1] summarized 
the impact of climate change on freshwater systems are mainly due to increases in 
temperature and precipitation variability. Higher water temperatures, increased precipitation 
intensity, and longer periods of low flows exacerbate water pollution, with impacts on 
ecosystems (e.g., fish habitat), human health, water system reliability, and operation cost [1]. 
 
The outputs from various General Circulation Models (GCMs) like Couple Global Climate 
Model (CGCM3) from Canadian Climate Centre Modeling and Analysis (CCCma), and 
Hadley Centre Couples Climate Model (HadCM3) developed in the United Kingdom are 
available to generate future climate scenarios. However, the GCMs were not designed to 
analyze the hydrological impact at the watershed scale and therefore have coarser spatial 
resolution as compared to what is required for watersheds impact studies. GCMs are 
inherently unable to represent watershed scale features and dynamics for hydrological 
impact studies [9,10]. To bridge this gap, the techniques have been developed to downscale 
GCMs output into local meteorological variables required for hydrological modeling, usually 
referred to as downscaling techniques. The downscaling techniques can be statistical or 
dynamic. The Statistical Down Scaling Model (SDSM) was used in this study, considering its 
advantages over dynamic method because statistical method is computationally 
undemanding and provides station or local-scale climate information based on GCM-scale 
output [11]. 
 
Hydrological impact of land use change has been investigated in a variety of studies using 
modeling methods [12-15]. The water quality in a watershed is affected directly by vegetative 
cover and agricultural and other land management practices [16]. Bhattarai et al. [16] used 
BASINS-SWAT model to estimate the effect of land use change on nitrogen and phosphorus 
runoff and sediment deposition in a small watershed in the Alabama Wiregrass Region. 
Similarly, many researchers have pointed out adverse effect of increasing urban land use on 
water quality [17-20]. 
 
Many previous studies have assessed the impact of climate change on hydrology [21-26]. 
Dibike and Coulibaly [27] applied statistical downscaling techniques to generate future 
climate scenarios in the Saguenay watershed in Canada at a local watershed scale and 
simulated the corresponding flow based on the downscaled future climate data as an input to 
hydrological models. Rich et al. [28] applied WARMF to assess impacts of extended 
droughts and increased temperature due to climate change on hydrology of the San Juan 
Basin. Simulations showed that drought and increased temperature impact water availability 
and lead to increased frequency of critical storages. The assessment of impact of climate 
change on water quality in the southeastern United States revealed that watersheds are 
likely to have higher nitrogen levels and lower dissolved oxygen problems [29]. However, 
very few have conducted the climate change impact study for water quantity as well as 
quality [29-32]. Wang investigated the individual and combined impact of future land use and 
climate change in the Wolf Bay Watershed using SWAT. United States Environmental 
Protection Agency (USEPA) is evaluating the impacts of land use and climate change of 
hydrology and water quality in major rivers basins throughout the United States using 
watershed models, HSPF and SWAT [33,34]. Limited water quality parameters such as total 
nitrogen, total phosphorus concentration, etc. are considered in previous impact studies. 
 
The objective of this study was to assess the impact of land use change and climate change 
(downscaled to local watershed scale) based on CGCM3 and HadCM3 future climate 
scenarios, on flow and five water quality parameters (water temperature, dissolved oxygen, 
total nitrogen, total phosphorus, and algal concentration) in the streams of the Saugahatchee 
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Creek Watershedin Alabama (Fig. 1). The physically-based WARMF model for the 
Saugahatchee Creek Watershed (WARMF-SCW) was set up, calibrated, and validated for 
observed flow and water quality, then it was run for past and future climate scenarios, and 
their potential impacts were evaluated. After we have a better understanding on potential 
changes of stream and reservoir water quality due to climate warming, we can further study 
its impacts on fish habitat using different oxythermal criteria [35]. 
 

 
 

Fig. 1. Geographical location of the Saugahatchee creek watershed in the tallapoosa 
basin including surrounding counties in Alabama, USA. The monitoring Station-8 is at 

the same location as the USGS gaging station 02418230 
 
2. MATERIALS AND METHODS 
 
2.1 Study Area 
 
The watershed of concern is the Saugahatchee (also referred as Sougahatchee) Creek 
Watershed, located mostly in Piedmont region of eastern Alabama with an area of 
approximately 550 km

2
 (Fig. 1). Beginning with its headwaters in Chamber and Lee counties, 

the Saugahatchee Creek runs westward through parts of Macon and Tallapoosa counties 
until it enters Yates Reservoir and converges to Tallapoosa River. Two segments in the 
Saugahatchee Creek Watershed (Fig. 1) were listed on the Alabama Department of 
Environmental Management (ADEM)’s 303 (d) list of impaired waters under the federal 
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Clean Water Act [36]. Pepperell branch, a tributary to the Saugahatchee Creek was listed as 
impaired waters for nutrients and the portion of the Saugahatchee Creek entering Yates 
Reservoir (Yates Reservoir Embayment) was listed for nutrients and organic enrichment and 
dissolved oxygen. The headwater portion of the watershed is the Auburn-Opelika 
metropolitan area in Lee County (Fig. 1) with a 2009 population of 135,883 (140,247 in 
2014). It was the 19

th
 fastest growing metro area in the United States between 1990 and 

2000<http://en.wikipedia.org/wiki/Auburn,_Alabama_metropolitan_area>. The growth of the 
cities has resulted in land use change and might have potential changes in stream water 
quality. 
 
2.2 Models and Data 
 
Complex hydrological models such as AGNPS (Agricultural Nonpoint Source Pollution Model 
[37]); BASINS (Better Assessment Science Integrating point and Nonpoint Sources [38]); 
HSPF (Hydrological Simulation Program – Fortran [39]); GWLF (Generalized Watershed 
Loading Functions [40]); SWAT (Soil and Water Assessment Tool [41]); and WARMF [6] 
have been frequently applied to study watershed hydrology in the United States (U.S.) and 
all over the world. A physically based, dynamic watershed model WARMF was applied to 
this study to the Saugahatchee Creek Watershed for assessing hydrology and water quality 
impact due to land use and climate change. Although other models, discussed above, would 
yield similar results, WARMF was applied here for its integration of stream and one-
dimensional (1-D) reservoir water quality models, user friendly interface and ability to assess 
the impact of point and nonpoint sources with varying land use and meteorological 
scenarios.  
 
WARMF is an integrated watershed model with simulation models and databases under one 
GIS-based graphical user interface (GUI). The algorithms embedded in WARMF are 
adapted from many well established codes such as ILWAS (Integrated Lake Watershed 
Acidification Study [42,43]), ANSWERS (Areal Nonpoint Source Watershed Environmental 
Response Simulation [44,45]), SWMM (Storm Water Management Model [46]) and WASP 
(Water Quality Analysis Simulation Program [47]). 
 
WARMF represents a watershed by dividing it into a network of land catchments, river 
segments, and one- or two-dimensional reservoirs. Land catchment is further divided into a 
canopy layer, a snowpack, and up to five soil layers. Each compartment is considered as a 
seamlessly connected continuously stirred tank reactor (CSTR) for flow routing and mass 
balance calculation. WARMF simulates the process of canopy interception, snowpack 
accumulation and snowmelt, infiltration through soil layers, evapotranspiration, surface 
runoff, and groundwater exfiltration to river segments. The water from the upstream river 
segment is mixed with water in the river segment from previous time step and the point and 
nonpoint loads entering the river segment during the time step. Heat budget and mass 
balance are performed to calculate the temperature and concentration of various water 
quality constituents in each soil layer, river segment, and reservoir [6]. 
 

The flowchart of the study involving different models, data, and scenarios is given in (Fig. 2).  
The delineated watershed map with land catchments, stream segments and reservoirs, is 
required for WARMF, to which input data can be given and simulation results can be viewed. 
BASINS [38] provides watershed delineation tool which helps to delineate watershed based 
on digital elevation model (DEM) and river network. To delineate watershed, BASINS data 
download tool extracts nationally derived databases like boundaries for States and 
Cataloging Units, DEM, National Hydrography Dataset (NHD) and National Land Cover 
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Dataset (NLCD). A BASINS project can be set up for 8-digit hydrologic unit code (HUC) 
watershed by selecting the geographic area of interest from among the entire 48 contiguous 
United States. The watershed delineation developed from BASINS can be imported into 
WARMF [48]. The Saugahatchee Creek Watershed is a subset watershed of Lower 
Tallapoosa Watershed (Fig. 1) in Alabama (HUC 03150110). BASINS project for HUC 
03150110 was built and only those catchment layers that drain into the Saugahatchee Creek 
were selected for the WARMF-SCW model [49]. 
 
WARMF uses readily available data from National Oceanic and Atmospheric Administration 
(NOAA), USEPA, and United States Geological Survey (USGS) and other online sources to 
predict hydrology and water quality in streams. To run the simulation, land use data, 
meteorological data, air quality data, and soil properties are required. Observed hydrology 
and water quality data are required for model calibration and validation (Fig. 2). Land use 
represents the characteristics of watershed. Land use data can be directly imported into 
WARMF as a GIS shapefile. Land use shapefile used for model calibration was obtained for 
the Saugahatchee Creek Watershed for 2009 (LU 2009) (Fig. 3). The meteorological data 
required for WARMF includes precipitation, dew point temperature, minimum and maximum 
air temperature, cloud cover, air pressure and wind speed. National Climatic Data Center 
(NCDC) Global Summary of Day, online climate dataset was used to download the 
necessary weather data for station in Montgomery, AL (Montgomery Dannelly Field) except 
cloud cover data which was calculated using recommended formula [49]. The dry and wet 
deposition for air quality was obtained from National Atmospheric Deposition Program 
(NADP) and USEPA Clean Air Status and Trends Network (CASTNET) website for GAS153 
and AL10 Station, respectively [49]. There are three major point-source dischargers that 
contribute to the Saugahatchee Creek. The average flow discharge from these point 
dischargers and constituent loadings were obtained from data collected by ADEM and 
Auburn University [36] in previous studies. 
 

 
 

Fig. 2. Flowchart of the study involving different models, data and scenarios 
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Fig. 3. 2009 land use map of the Saugahatchee creek watershed (LU 2009) 
 
2.3 Land Use Change Scenarios 
 
There have been significant changes in land use pattern of the Saugahatchee Creek 
Watershed over the last two centuries, particularly in recent years [50]. The upper watershed 
is undergoing rapid transition from forest to urban/developed land. Forest area has declined 
and urban and transitional area has increased. The changes in land use distribution are 
expected to bring changes in water quality, including surface flow, nutrient runoff, and 
sedimentation levels [16]. Multi-temporal datasets of Landsat5 Thematic Mapper imagery, 
aerial photographs, and other vector datasets were used to determine land use land cover 
(LULC) changes over the study periodfor year 1991, 2001 and 2009. Historical analyses of 
changes in the LULC over the study area were done to model changes in the LULC and to 
develop and validate logistic regression model. Landsat data was processed utilizing 
unsupervised classification in ERDAS Imagine with ISODATA clustering algorithm [51]. The 
ISODATA clustering method uses the minimum spectral distance formula to form clusters by 
iteration. It was followed by cluster busting method to improve accuracy of land cover 
classification. The classified land cover maps were produced by employing five types of land 
cover categories: Water, Forest, Open/Transition, Urban, and Ag/Pasture. The accuracy 
assessment was carried out to evaluate overall accuracy of LULC classification results. The 
overall accuracies for the pixel based unsupervised classification with cluster busting for 
year 1991, 2001, and 2009 were 90%, 90%, and 90.4%, respectively [52]. 
 
Urbanization patterns in the Saugahatchee Creek Watershed were modeled using GIS and 
remote sensing imagery coupled with logistic regression analysis. For modeling purposes, 
the spatial unit utilized was the Lee County tax parcels. Parcel data is most commonly used 
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in city planning and unlike per pixel classification, which is limited to land cover, using 
parcels as spatial unit of classification it is possible to determine land use associated with it 
and provides better spatial configuration of land cover. The raster dataset of LULC 
classification for year 1991, 2001, and 2009 was then transferred from the image pixels to 
vector dataset of Lee County parcels using a “Majority” algorithm in ERDAS Imagine. By 
employing various drivers of LULC change, such as distance of a parcel from major road, 
school, commercial and industrial areas, provision of utility, and population density as 
variables, a land use model based on multiple logistic regression analysis was developed 
and validated over the period 1991 to 2009 [52].  
 
The land use conversion model developed using logistic regression model in ArcGIS was 
then used to predict future land use of 2030 (LU 2030).For this study, LU 2009 was used as 
baseline scenario in logistic regression model to predict development for the year 2030. For 
each parcel, probability of change is computed with the fitted model for the 2030 scenario. 
The projected LU 2030 (Fig. 4) was then used as future land use scenario (Table 1) [52]. 
 
The change detection analysis of the study area done by Sawant [52] for the period from 
1991 to 2009 shows conversion of forest to municipal land use in the Saugahatchee Creek 
Watershed has been the most dominant LULC change in the past two decades. Since 1991 
footprint of urban area within the Saugahatchee Creek Watershed has increased by 36.5% 
to 7,035 acres in year 2009. Although the area of urbanization is only about 5%of the total 
area of the Saugahatchee Creek Watershed, the urbanization has likely played a role in 
impairment of the Pepperell branch of the Saugahatchee Creek. Most of the urban changes 
occurred within and immediate vicinity of the existing urban land use areas. The land change 
detection shows spread of urban land use in the surrounding areas [52]. 
 

 
 
Fig. 4. Projected 2030 land use map of the Saugahatchee Creek Watershed (LU 2030) 
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Table 1. Land use change in the Saugahatchee creek watershed 
 

Land use categories Area in km
2
 (percentage of total area) 

LU 2009  LU 2030  
Water 2 (0.4%) 2 (0.3%) 
Forest 449 (83.3%) 385 (71.4%) 
Open/Transition 43 (8.0%) 37 (6.9%) 
Urban 18 (3.4%) 94 (17.5%) 
Ag/Pasture 26 (4.8%) 21 (3.9%) 

 
2.4 Climate Change Scenarios and Downscaling 
 
Future climate projected using GCMs have coarser spatial resolutions than what is required 
for a watershed scale study. For hydrologic and water quality impact studies, local or station 
scale meteorological variables are required, which can be derived using large-scale 
atmospheric variables available from GCM outputs. Future climate change scenarios were 
downscaled for the Saugahatchee Creek Watershed at daily time scales, using four GCM 
outputs (CGCM3 A1B, CGCM3 A2, HadCM3 A2 and HadCM3 B2). The software used for 
downscaling is SDSM [11]. 
 
In statistical downscaling techniques, the quantitative relationships are established between 
large-scale atmospheric variables (predictors) and local or station surface variables 
(predictands). The National Centers for Environmental Prediction (NCEP) and National 
Center for Atmospheric Research (NCAR) worked together in a reanalysis project to produce 
a physically consistent retroactive record of more than 50 years of global analyses of 
atmospheric fields to support the needs of research and climate monitoring communities 
[53]. Reanalysis project involved the recovery of data from many observed and 
measurement systems, quality controlled and assimilated with a data assimilation system 
kept unchanged over the reanalysis period. The main objective of reanalysis is to eliminate 
perceived climate jumps associated with changes in data assimilation system and provide 
consistent records of temperature, precipitation, winds and many other variables that 
describe climatic conditions from the past to the present. The daily NCEP/NCAR reanalysis 
data were selected to represent the large-scale predictors in the SDSM model.  
NCEP/NCAR data have been used in several downscaling studies in different regions over 
the world [27,54]. 
 
Using SDSM, the appropriate large-scale predictor variables were selected from the list of 
predictors obtained from NCEP/NCAR reanalysis data for the period of 1961–1990, based 
on regression techniques, to downscale predictands (such as station precipitation, maximum 
and minimum temperature). Table 2 lists the predictor variables (from NCEP/NCAR) 
screened for downscaling and the predictands. SDSM constructs a downscaling model with 
parameters of the model based on multiple regression equations, given observed daily 
weather data (predictand) and the selected large-scale NCEP predictors for the same time 
period. The observed daily weather data at Montgomery Dannely Field station from 1961 to 
1990 were downloaded from NOAA’s National Climatic Data Center (NCDC) web site. The 
climate data from 1961–1975 were used to develop the regression model and the model 
regression weights (as parameter file) produced were then used to validate the climate 
conditions for the period from 1976–1990. The detailed process of selecting predictors, 
calibration results (such as R

2
), parameter file generation, and validation is presented 

elsewhere by Shrestha [49]. 
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Table 2. List of predictands (station climate parameters) and corresponding 
predictors used in SDSM model to downscale GCMs outputs 

 
Station parameters Predictors from NCEP/NCAR and CGM

1
 

Precipitation 500 hPa divergence (p5zh),  
Relative humidity at 500 hPa (r500),  
Specific humidity at 500 hPa (s500),  
Relative humidity at 850 hPa (r850), and  
Specific humidity at 850 hPa (s850) 

Maximum temperature Mean temperature (temp), and 
500 hPa geopotential height (p500) 

Minimum temperature Mean temperature (temp), and  
Near surface specific humidity (shum) 

1
variable name used in SDSM is given inside parenthesis 

 
The parameter file was then used to downscale future climate to local watershed scale 
based on predictor derived from GCMs. SDSM future climate predictors may be obtained for 
any global land area through data portal maintained by the Canadian Climate Impacts 
Scenarios Group (CCIS) <http://www.cics.uvic.ca/scenarios/index.cgi?Scenarios>. The 
predictors are available for CGCM3A1B, CGCM3 A2, HadCM3 A2, and HadCM3 
B2scenarios. 
 
Given the latitude and longitude of the Saugahatchee Creek Watershed, CGCM3 A1B, 
CGCM3 A2, HadCM3 A2, and HadCM3 B2 predictors were extracted for the nearest grid 
along with NCEP/NCAR predictors interpolated to the same grid as GCMs. The future 
climate projection scenarios were separated into three time frames and termed as 20s 
(2011–2040), 50s (2041–2170), and 80s (2071–2100). Figs. 5 and 6 show the patterns of 
downscaled monthly average precipitation, maximum (Tmax) and minimum (Tmin) 
temperatures compared to baseline (1961-1990) for the study watershed along with 
standard deviation corresponding to CGCM3 A1B, CGCM3 A2, HadCM3 A2, and HadCM3 
B2 scenarios, respectively. The mean monthly maximum and minimum temperatures are 
projected to increase over time up to 5.98ºC in July from CGCM3 A2 80s (Fig. 5), especially 
similar increases in summer months for all four scenarios, e.g., 4.82ºC average increase 
from the baseline in July–September for CGCM3 A2 80s (Fig. 5). The standard deviations of 
Tmax and Tmin over 30 year periods are higher in the winter months (up to 7.3ºC) and lower in 
summer (~2ºC). The CGCM3 downscaled results projected slight changes in precipitation 
during early 21st century (20s), but precipitation is projected to increase during the later 
century (Fig. 5) whereas for HadCM3 scenarios, precipitation decreased from the baseline, 
especially during summer (Fig. 6). For CGCM3 A2 80s, monthly average precipitations in 
summer months (June–August) are projected to increase 21.4% to 68.1% (Fig. 5); while 
those are projected to decrease -16.7% to -76.1% for HadCM3 A2 80s (Fig. 6). Two 
scenarios (A1B and A2) of CGCM3 (Fig. 5) projected more increases in the winter months 
(November and December) and early spring (February). 
 
The possible uncertainties that statistical model can carry is due to its assumption that the 
statistical relationships between the past predictors and predictands will remain valid in the 
future climate scenarios [11]. 
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Fig. 5. General trends in average monthly maximum temperature (Tmax), minimum 
temperature (Tmin), and precipitation (Prcp) corresponding to downscaled climate 

change scenarios based on CGCM3 A1B and CGCM3 A2 for three 30-year time 
periods (20s for 2011-2040, 50s for 2041-2070, and 80s for 2071-2100) 
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Fig. 6. General trends in average monthly maximum temperature (Tmax), minimum 
temperature (Tmin), and precipitation (Prcp) corresponding to downscaled climate 

change scenarios based on HadCM3 A2 and HadCM3 B2 for three 30-year time 
periods (20s for 2011-2040, 50s for 2041-2070, and 80s for 2071-2100) 
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3. RESULTS AND DISCUSSION 

 
3.1 Model Calibration and Validation 
 
The Saugahatchee Creek Watershed was divided into 44 subcatchments, 40 stream 
segments, and 2reservoirs (Fig. 1) [49]. The hydrologic and water quality parameters can be 
assigned to these segments individually, referred as catchment coefficients, river 
coefficients, and reservoir coefficients in WARMF manual [7]. There are another set of 
parameters known as system coefficients that apply to all catchments in the watershed [7]. 
During the calibration, some of catchment, river, reservoir, and system coefficients were 
manually adjusted to obtain a best fit (Table 3) based on guidance from the model parameter 
study [55]. 
 

Table 3. Keyparameter values after WARMF calibration 
 

Parameters Units Literature range Calibrated value 
Precipitation weighting factor - 0.5 - 1.5 0.74 
Evaporation magnitude - 0.6 - 1.4 0.91 
Evaporation skewness - 0.6 - 1.4 0.9 
Number of soil layers - 1 - 5 3 
Thickness of soil layers cm > 0 8 – 79 
Saturation moisture - 0.2 - 0.6 0.35 – 0.45 
Field capacity - 0 - 0.4 0.18 – 0.31 
Initial moisture - 0 - 0.6 0.25 
Horizontal conductivity cm/day > 0 3600 – 5600 
Vertical conductivity cm/day > 0 1800 – 2800 
Aeration factor /day 0.2 - 1 0.5 
Sediment oxygen demand g/m

2
/day 0.1 – 2 0.8 

 
The simulation of watershed model can be judged satisfactory if Nash-Sutcliffe efficiency 
[56] (NSE)>0.5, if the ratio of the root mean square error to the standard deviation of 
measured data (RSR) ≤0.7, and if the percent bias (PBIAS) is within ±25% for flow [57]. 
 
Nash-Sutcliffe model efficiency coefficient is defined as: 
 

NSE = 1 − �
∑ ���

������
����

�
�
���

∑ ���
����������

�
�
���

�                                                                                (1) 

 
Where obs

iY  stands for the i
th
 observed data, sim

iY  stands for the corresponding simulated 

value, and 
meanY  is mean value of all observed data. The ratio RSR is calculated as: 

 

RSR =
�∑ ���

������
����

�
�
���

�∑ ���
����������

�
�
���

                                                                                        (2) 

 

Percent bias is calculated using Eq. (3): 
 

PBIAS =   �
∑ ���

������
����∗����

���

∑ ���
�����

���

�                                                                               (3) 
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The observed flow daily data is available at USGS Gage Station 02418230 (Fig. 1) in the 
Saugahatchee Creek near Loachapoka since 2000. The flow was calibrated for the period 
2000–05 and validated for the period 2006–09 (Fig. 7). The model simulation was run three 
years (model spin-up period) prior to the calibration period starting from 1997 to minimize the 
effect of initial conditions used in the model. The simulation of average daily flow resulted in 
NSE, RSR and PBIAS values for calibration (validation) as 0.64, 0.60 and -5.72% (0.56, 0.66 
and -9.48%), respectively. These parameter values indicate overall satisfactory model 
calibration and validation of the WARMF-SCW. 
 

 
 
Fig. 7. Flow calibration (2000–2005) and validation (2006–2009) using WARMF-SCW at 

the USGS 02418230 Station in the Saugahatchee creek near Loachapoka, Alabama 
 
ADEM and Auburn University collected water quality data in the Saugahatchee Creek 
Watershed in 2000–2002 [36]. The observed water quality data such as temperature, 
dissolved oxygen (DO), total phosphorus (TP), and nutrients were available for Station-8 ( 
Fig. 1) at the same location as USGS Gage Station 02418230 but not in daily 
basis[35].Therefore, water quality calibration was performed based on visual comparison of 
simulated and observed data. Time series plots shown on (Fig. 8) indicate the WARMF-
SCW model simulates these water quality parameters reasonably well. 
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3.2 Impact of Land Use and Climate Change on Hydrology and Water Quality 
 
The impact study was performed on the Saugahatchee Creek Watershed to evaluate the 
effects on hydrology and water quality due to future land use and future climate scenarios. 
The impact was analyzed under three categories: Impact due to land use change only, 
impact due to climate change only, and impact due to combined land use and climate 
change. Flow and water quality parameters were reported at the watershed outlet (Yates 
Reservoir Embayment) and their monthly average of daily values for baseline and various 
land use and climate change scenarios were calculated and compared for impact analysis. 
 
3.2.1 Impact due to land use change only 
 
The baseline scenario corresponding to land use of 2009 and future land use scenario 
corresponding to projected land use of 2030 were analyzed using 30 years (1981-2010) 
simulation results to investigate the effects of land use change only. (Fig. 9) shows monthly 
average of daily values for flow and water quality parameters under the baseline (LU 2009) 
and future land use (LU 2030) scenarios simulated using same 30-year (1981-2010) 
meteorological data. 
 
The monthly averages of daily flow for LU 2009 ranged from4.14 (September) to 14.22 
(March) m

3
/s and are projected to rangefrom4.62 to 14.29 m

3
/s for LU 2030. The increase or 

decrease in the monthly average flow from LU 2009to LU 2030is projected to be not more 
than 12.6% (Fig. 9). Similarly, for surface water temperature, there is very little or no change 
projected between two land use scenarios. The increase or decrease in the monthly average 
surface water temperature corresponding to LU 2030is less than 0.5% (Fig. 9). Therefore, 
land use change from 2009 to 2030 will not have significant impact on flow and surface 
water temperature in the Yates Reservoir Embayment for the simulation period. 
 
Surface dissolved oxygen concentration in the Yates Reservoir Embayment, in terms of 
monthly average of daily values, will not experience much change due to land use change, 
partly because the simulation was performed on daily time step. The water body with 
predominance of algae shows a larger fluctuations in dissolved oxygen than less productive 
water with low algal concentration [58]. The water bodies with algal concentration higher 
than 15 μg/l are categorized as eutrophic and higher than 40 μg/l as hypereutrophic water 
bodies [59]. Higher eutrophic level implies algal abundance and hence exhibit higher rate of 
photosynthesis, respiration, and decomposition. For eutrophic and hypereutrophic systems, 
the dissolved oxygen concentration tends to increase during day time due to algal 
photosynthesis dominating over respiration and decomposition; whereas the system will 
have less dissolved oxygen concentration during night as there is no sunlight for 
photosynthesis [60,61]. Due to limited data availability, the simulation was run on daily time 
steps in the model, which doesn’t model diurnal phenomenon [49]. Fig. 9 shows the relative 
change in monthly average of daily DO concentration to the baseline corresponding to LU 
2030 is 2.0% at most. 
 
In the Saugahatchee Creek Watershed, forest land has been transformed into urban land 
(Table 1). Pesticides, industrial waste, urban stormwater and sewage are the major source 
of nutrients. Therefore, the major impact that land use change has on the watershed is to the 
nutrient concentration in the streams and reservoirs. LU 2030 projects to produce monthly 
average TP concentration to be from 55.8 to 71.7% greater than baseline scenario (Fig. 9). 
The relative change in monthly average of daily TN concentration to the baseline 
corresponding to LU 2009is projected to range from1.0 to 7.7% (Fig. 9). 
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Fig. 8. Water quality calibration (2000–2001) and validation (2002) using WARMF-SCW 
at the Station-8 near Loachapoka, Alabama 
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Fig. 9. Simulated monthly average flow and water quality parameters under the 
baseline (LU 2009) and future land use scenario (LU 2030) 

 
The algal growth in streams and reservoirs are seasonal. The growing season for the 
Saugahatchee Creek Watershed has been identified as April through October [36]. Monthly 
average chlorophyll-a concentration under 2009 land use varied from 1.8 to 33.7 μg/L during 
growing season at Yates Reservoir Embayment, which is a highly eutrophic reservoir.              
Fig. 9 shows the relative change in the monthly average of daily algal concentration to the 
baseline corresponding to LU 2009 rangesfrom-32.8 to 72.1% or -0.2 to 4.4 μg/L (Fig. 9). 
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3.2.2 Impact due to climate change only 
 
The impact on flow and other water quality parameters due to future climate scenarios was 
analyzed under four different GCMs output scenarios, namely CGCM3 A1B, CGCM3 A2, 
HadCM3 A2, HadCM3 B2 scenarios. Each GCMs output was further separated into three 
30-year time frames: 20s (2011-2040), 50s (2041-2070), and 80s (2071-2100). For 
comparing results of climate change scenarios to the baseline, the monthly average of daily 
projected values over the period of 30-year time frame of 20s, 50s, and 80s were calculated 
and compared with the monthly average of daily simulated values over the baseline period 
(1981-2010). Land use (LU 2009) was kept constant for the baseline and climate change 
scenarios to analyze the effect of climate change only. Figs.10 to 13 show the monthly 
average of daily values of projected flow and water quality parameters under different future 
climate scenarios. 
 
The monthly average of daily flow is projected to increase corresponding to CGCM3 A1B 
and B2 scenarios, whereas projection corresponding to HadCM3 A2 and B2 scenarios 
produces lower flows ( 
Fig. 10–13), especially towards the end of 21

st
 century (2080s). These projections are 

reflective of input precipitation pattern for the future climate scenarios (Fig. 5 and 6). For 
example, under CGCM3 A280s scenario (Fig. 11), projected flow is increased by 17% (July) 
to 256% (December) with average increase of 88%, while under HadCM3 A2 80s scenario 
(Fig. 12), projected flow is decreased by -31% (May) to -62% (December) with average 
decrease of -49%. 
 
The surface water temperature is projected to increase, especially in summer. The increase 
in monthly average of daily surface water temperature reaches as high as 2.8ºC and3.6ºC 
for CGCM3 A1B and A2 scenarios (Figs. 10 and 11); and 5.4ºC and 4.6ºC for HadCM3 A2 
and B2 scenarios, respectively (Figs. 12 and 13). The monthly average of daily surface DO 
will decrease by 1.8 mg/l and2.3 mg/l at most for CGCM3 A1B and A2 scenarios (Figs. 10 
and 11); and 2.0 mg/l and 1.4 mg/l at most for HadCM3 A2 and B2 scenarios (Figs. 12 and 
13), respectively. The decrease in DO concentration is partly because of projected increases 
in water temperature as dissolved oxygen solubility is inversely proportional to water 
temperature [62]. 
 
For CGCM3 A1B and A2 scenarios, nutrients are projected to decrease in the stream, 
whereas for HadCM3 A2 and B2 scenarios, nutrient concentrations are projected to 
increase. It corresponds to the flow decrease in HadCM3 A2 and B2 scenarios (Fig. 6) as 
low flow tends to have higher concentration of nutrients. The monthly average TP is 
projected to decrease by 41.7% and 38.4% at most for CGCM3 A1B and A2 scenarios (Figs. 
10 and 11); and increase as high as 112% and 96% for HadCM3 A2 and B2 (Figs. 12 and 
13), respectively. The monthly average TN will decrease by 40.6% and 36.8% at most for 
CGCM3 A1B and A2 scenarios (Figs. 10 and 11); and increase as high as 84.5% and 59.7% 
for HadCM3 A2 and B2 (Figs. 12 and 13), respectively. Precipitation variability projected by 
GCMs may result in higher nutrient runoff during heavy storms and nutrient concentration 
tends to increase during low flow condition as well [63]. 
 
The algal concentration is significant only during the growing season (April through October). 
For CGCM3 A1B and A2 scenarios, algal concentrations are projected to decrease in the 
whole summer because of projected decrease in nutrients (Figs. 10 and 11). Under the 
baseline scenario, algal concentration during the growing season is 18 μg/l (eutrophic) 
ranging from 1.8 (April) to 33.7 μg/l (September), and under CGCM3 A2 80s scenario              
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(Fig. 11), algal concentration during the growing season is projected to be 2.8 μg/l 
(oligotrophic) ranging from 0.2 to 5.5 μg/l. For HadCM3 A2 and B2 scenarios, algal 
concentrations are projected to increase most of the time except during late-summer of 
2080s when it decreases (Figs. 12 and 13). Under HadCM3 A2 20s, 50s, and 80s scenarios, 
algal concentrations during the growing season are projected to be 24.1, 20.5, and 16.1 μg/l 
(Fig. 12), respectively. The algal growth rate increases with the increase in temperature up 
to the optimum level and then decreases with further increase in temperature [6]. 
 

 
 

Fig. 10. Projected monthly average flow and water quality parameters under the 
baseline (1981–2010) and three climate change scenarios (20s, 50s, and 80s) 

downscaled with CGCM3 A1B 
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Fig. 11. Projected monthly average flow and water quality parameters under the 
baseline (1981–2010) and three climate change scenarios (20s, 50s, and 80s) 

downscaled with CGCM3 A2 
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Fig. 12. Projected monthly average flow and water quality parameter under the 
baseline (1981–2010) and three climate change scenarios (20s, 50s, and 80s) 

downscaled with HadCM3 A2 
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Fig. 13. Projected monthly average flow and water quality parameters under the 
baseline (1981–2010) and three climate change scenarios (20s, 50s, and 80s) 

downscaled with HadCM3 B2 
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3.2.3 Impact due to combined land use and climate change 
 
For combined effect, the monthly average of daily projected values under the combined land 
use and climate change scenario (LU 2030 and 20s) were computed and compared with the 
monthly average of daily simulated values under the baseline scenario (LU 2009 and 1981-
2010). Four different GCM output scenarios (CGCM3 A1B and A2; HadCM3 A2 and B2) 
were used for the analysis (Fig. 14). 
 
The monthly average of daily flow is projected to increase by as high as 194.2% and 125.7% 
under CGCM3 A1B and A2 scenarios; and decrease by 35% and 40% at most under 
HadCM3 A2 and B2 scenarios, respectively (Fig. 14). The surface water temperature, in 
terms of monthly average of daily values, is expected to increase by as high as 17.5% and 
11.4% under CGCM3 A1B and A2 scenarios; and increase as high as 9.8% and 8.5% under 
HadCM3 A2 and B2 scenarios; respectively (Fig. 14). The combined effect deteriorates 
oxygen levels in the streams and reservoirs. The average monthly DO is projected to 
decrease slightly under all four scenarios, with 9.6% or 0.7 mg/l at most for CGCM3 A2 
scenario (Fig. 14). 
 
The monthly average TP and TN concentration is projected to increase due to combined 
effect. The annual average TP for the baseline and four scenarios (CGCM3 A1B, CGCM3 
A2, HadCM3 A2, and HadCM3 B2) are 0.082, 0.108, 0.123, 0.177, and 0.203 mg/l, 
respectively. The increase in TP and TN concentration is higher under HadCM3 compared to 
CGCM3 scenarios. Chlorophyll-a concentration during the growing season is expected to 
increase to 25.8 and 26.3 μg/l under HadCM3 A2 and B2 scenarios due to combined effect, 
respectively (Fig. 14). 
 
4. SUMMARY AND CONCLUSION 

 
In this paper, a physically-based dynamic watershed model, WARMF, was applied to assess 
the impact on hydrology and water quality in streams and reservoirs of the Saugahatchee 
Creek Watershed in Alabama, USA, due to land use change and climate change. The model 
was calibrated for flow using six years (2000–2005) of stream flow data from USGS gage 
station and the flow validation was conducted for the period 2006–2009. Water quality 
calibration and validation was performed for the period 2000–2002 based on available data. 
By employing various drivers of LULC change, future land use scenario of 2030 is projected 
using multiple logistic regression analysis after the land use model was validated over the 
period 1991 to 2009. Future climate scenarios derived from CGCM3 and HadCM3 for 30-
year future period of 20s (2010–2040), 50s (2040–2070), and 80s (2070–2100), were 
downscaled to local scale using SDSM downscaling technique and compared to baseline 
scenarios of 1981-2010. The response of watershed model to these different land use and 
climate change scenarios was analyzed by comparing the monthly average of daily 
projected values of flow and water quality for 30-year period. 
 
Land use change scenario for 2030projects forest areas will be reduced to 71.4% from 
83.3% in 2009 and urban areas will be increased to 17.5% from 3.4% in 2009 in the 
watershed (Table 1). For the effects of land use change only, the simulation over the period 
of 30 years (1981–2010) predicts increases in flow to be 12.6% or less whereas increase in 
TP concentration to be up to 71.7% for LU 2030 in comparison to the baseline scenario LU 
2009. These results demonstrate that land use change has major impact on nutrient 
concentration but less significant impact on flow. The algal increase up to 4.4 μg/lis expected 
during the growing seasons in the streams and reservoirs due to increased level of nutrients. 
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Fig. 14. Projected monthly average flow and water quality parameters under the 
baseline (1981–2010 and LU 2009) and combined land use change and climate change 

scenario (20s and LU 2030) downscaled with CGCM3 A1B and A2, and HadCM3 A2 
and B2 
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Future climate scenarios were obtained by statistically down scaling the derived outputs from 
CGCM3 and HadCM3 models. Climate change scenarios CGCM3 A1B, CGCM3 A2, 
HadCM3 A2, and HadCM3 B2 show increasing pattern of maximum and minimum 
temperatures in 20s, 50s, and 80s. The anomalies of air temperature rise in these future 
climate scenarios to the baseline scenario (1981–2010) are higher especially in summer (up 
to 6.0ºC in July from CGCM3 A2 80s). The watershed response to these changes without 
considering land use change, based on monthly average of daily values, will result rise in 
water temperature ranging from 2.8 to 5.4ºC, especially during summer which is obvious 
corresponding to the rise in air temperatures. The monthly average of daily flow is predicted 
to increase corresponding to CGCM3 (annual average increase of 88%) and decrease 
corresponding to HadCM3 scenarios (annual average decrease of -49%). Accordingly, 
nutrient concentration (TP and TN) is expected to decrease corresponding to CGCM3 (Figs. 
10 and 11) and increase corresponding to HadCM3 (Figs. 12 and 13) scenarios. The results 
show contrasting watershed response on flow and nutrient concentration based on which 
GCM is selected for future climate scenarios. DO concentration are predicted to fall up to 2.3 
mg/l (monthly average), especially in summer for the four climate scenarios. 
 
Combined effect due to land use change and climate change adds more to increases in 
nutrient concentrations underHadCM3 A2 and B2scenarios as both land use change and 
climate change cause nutrient concentration to increase. For CGCM3 A1B and A2 
scenarios, nutrient concentrations are shifted from relatively decreasing under climate 
change only effect to increasing under combined effect. The annual average TP for four 
scenarios (CGCM3 A1B, CGCM3 A2, HadCM3 A2, and HadCM3 B2) are projected to be 
0.108, 0.123, 0.177, and 0.203 mg/l, respectively, comparing 0.082 mg/l for the baseline. 
The average monthly DO is projected to decrease slightly under all four scenarios (up to 
9.6% or 0.7 mg/l decrease for CGCM3 A2 scenario, Fig. 14). 
 
Flow, temperature, nutrients concentration, algae, and dissolved oxygen concentration, all 
interact with each other in a complex watershed system. The impact study under different 
scenarios of land use and climate change using advanced watershed model gives us better 
understanding about how management alternatives can be launched during watershed 
planning. 
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