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Optimized Control Method for Fused Deposition 3D 
Printing Slice Contour Path Based on Improved Hopfield 
Neural Network
Yuwei Donga and Bo Hub

aFaculty of Mechanical & Material Engineering, Huaiyin Institute of Technology, Huaian, China; 
bDepartment of Mechanical and Electrical Engineering, Jiangsu Huaian Industrial Secondary Vocational 
School, Huaian, China

ABSTRACT
This paper presents a novel approach for optimizing the con-
tour path of fused deposition 3D printing slices to mitigate the 
limitations of inefficiency and time consumption associated 
with the process. The proposed algorithm leverages the 
Hopfield Neural Network (HNN) and an improved whale optimi-
zation algorithm to plan the printing order of each contour and 
optimize the network parameters, respectively. In particular, the 
algorithm transforms the running trajectory planning problem 
of the assembled tool head into a travel problem, which allows 
for a more efficient path planning approach. The HNN is then 
employed to determine the optimal path for each contour, with 
the network optimization process utilizing a nonlinear weight 
update method to overcome the drawbacks of the traditional 
HNN that is prone to generating invalid paths and falling into 
local optimality during operation. The network optimization 
process is designed to automatically adjust the link weights 
between neurons within a specific range, thereby ensuring 
that the network reaches the desired energy minima and out-
puts the optimal path for 3D printed slice contours. The pro-
posed algorithm was tested in part printing experiments, and 
the results demonstrated a significant reduction in single-layer 
contour path lengths, printing times, and an enhancement in 
dimensional accuracy and surface quality of the printed parts 
compared to the traditional parallel scanning method. The pro-
posed algorithm represents a significant contribution to the 
field of 3D printing, as it provides an efficient and effective 
approach for optimizing the contour path of fused deposition 
3D printing slices. The findings of this study hold significant 
implications for improving the efficiency and quality of 3D 
printing and could potentially lead to further advancements in 
the field.
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Introduction

Since the end of the twentieth century, 3D printing technology has been 
developing in the long run with the increasing progress of computer science 
and materials science. As an agent of change in the manufacturing field, 3D 
printing technology can efficiently process and manufacture complex compo-
nents, reducing research and development costs and production cycles, and 
profoundly affecting many industries such as mechanical engineering, medical 
devices, and industrial engineering. Among 3D printing technologies, fused 
deposition 3D printing is one of the most widely used molding processes in 3D 
printing (Luo et al. 2020).

The main principle of fused deposition 3D printing is to melt the material 
into a liquid state by virtue of high temperature, extrude it through the print 
head, and then solidify it, using materials such as ABS and polycarbonate PC. 
The key to the slicing process of fused deposition 3D printing is the creation of 
mathematical models. The slicing algorithm used in the fused deposition 3D 
printing process is directly related to the speed and accuracy of the printed 
model (Fok et al. 2019).

Among them, the role of contour path planning algorithms is to plan the 
printing sequence of polygonal contours for each layer cross-section in order 
to improve the efficiency and quality of 3D printed parts (Záda and Belda  
2022). At present, there is little research on path planning in 3D printing. The 
study of path planning in 3D printing is relatively rare, especially for the case 
where the single-layer cross-section obtained after slicing contains multiple 
and complex. The path planning algorithm involved in the slicing process has 
a significant impact on the reduction of printing path distance and printing 
time (Lomakin et al. 2019). The path planning algorithms involved in the 
slicing process still have room for further improvement to reduce the distance 
of the printing path and the printing time.

Ma et al (Ma et al. 2022). proposed a path optimization algorithm by using 
graph theory to solve two key problems in 3D concrete printing. They used 
graph theory-based partitioning algorithms to enhance the quality of concrete 
component modeling and introduced ant colony algorithms to improve print-
ing efficiency, respectively, to achieve effective improvement in the quality and 
efficiency of 3D printing nozzle work, shortening the time spent on 3D 
printing and improving print quality. Wang et al (Wang et al. 2021). proposed 
a new load-dependent path planning (LPP) method to generate printed paths 
for CFRPs that exactly follow the load transfer path of the part and can provide 
higher mechanical properties. Kim et al (Kim and Zohdi 2022). focused on 
how to 3D print the optimal tool path through deep learning techniques. Liu 
et al (Liu et al. 2021). proposed a method based on directionally parallel line 
segments to convert the 3D printing print path problem into a traveling 
salesman problem (TSP) and designed an improved genetic algorithm to 
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obtain the optimal path containing the minimum number of transitions. Sun 
et al (Sun et al. 2020) designed a bio-inspired 3D-printed parallel scan path 
based on finite element (FE) simulations using Bouligand structures to 
enhance mechanical properties and energy absorption, resulting in 
a significant increase in 3D-printed mechanical reinforcement.

Additive manufacturing of ABS was investigated using statistical analysis 
and optimization methods. ANN and RSM models were used to model the 
build quality, with ANN being more accurate and RSM being more capable. 
Results show that both models yielded similar results and could effectively give 
the effect of each variable on the mechanical properties (Moradi et al. 2023). 
This investigation (Meiabadi et al. 2021) aimed to improve the quality of FFF- 
printed objects in PLA by using RSM, statistical analysis, and artificial intelli-
gence methods. Results show that ANN-GA improved the accuracy of model-
ing by 7.5%, 11.5%, and 4.5% for toughness, part thickness, and production 
cost. Optimization results confirm that the optimized specimen was cost- 
effective and able to withstand deformation.

In this paper, we propose a fused deposition 3D printing slicing contour 
path optimization control algorithm based on improved HNN. The path 
optimization problem is then transformed into a travel quotient problem, 
and a suitable solution model is established based on HNN with full consid-
eration of the constraints. To address the problem that the HNN solution 
process is prone to premature aging and falling into local optimal solutions, 
the improved WOA based on the nonlinear weight update method is used to 
optimize the global search capability of the HNN, and the improved HNN is 
applied to the polygon contour path planning field of fused deposition 3D 
printing to reduce the jumping distance and lifting times of the extrusion head 
in each layer of the contour path printing and improve the 3D printed part 
efficiency rate and shorten part molding time.

The proposed study aims to address the limitations of inefficiency and time 
consumption associated with fused deposition 3D printing by developing 
a contour path optimization control algorithm. The need for such an algo-
rithm arises from the fact that the current 3D printing process involves 
a sequential printing of layers, which can result in redundant movements, 
long printing times, and reduced accuracy.

The novelty of the present study lies in the proposed approach that trans-
forms the running trajectory planning problem of the assembled tool head into 
a travel problem and utilizes the Hopfield neural network and an improved 
whale optimization algorithm for efficient and effective contour path plan-
ning. While previous research has explored path optimization techniques for 
3D printing, the present study contributes to the field by proposing a novel 
approach that specifically targets the contour path of fused deposition 3D 
printing slices and addresses the limitations of traditional Hopfield neural 
networks by introducing an improved whale optimization algorithm.
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Moreover, the present study contributes to the field by demonstrating the 
efficacy of the proposed algorithm in reducing single-layer contour path 
lengths, printing times, and improving the dimensional accuracy and surface 
quality of printed parts. The proposed approach can potentially enhance the 
efficiency and quality of 3D printing, which has significant implications for 
various applications, including manufacturing, biomedical engineering, and 
architecture, among others.

Overall, the present study fills a critical gap in the field by proposing a novel 
approach to contour path optimization for fused deposition 3D printing slices, 
which can potentially overcome the limitations of the current process and pave 
the way for further advancements in the field.

Setting of Polygon Profile Start Point in 3D Printing

3D printing is the process of printing a part layer by layer, and the shape of the 
part’s profile may vary from layer to layer. The cross-section of two parts after 
slicing is shown in Figure 1, which contains nine closed loops, and the printing 
order of each closed loop of the layer contour is planned. A reasonable and 

(1) Part A 

(2) Part B 

Figure 1. Cross-sectional profile of the part.
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effective planning of the part’s contour path is important to improve printing 
efficiency and print quality.

The section is composed of n closed curves (closed loops), and the contour 
path planning is to print the closed loops one by one. Each closed loop needs 
to determine a print starting point and an end point, and there are n starting 
points in the whole section. It is easy to see that the contour path planning 
problem can be reduced to the classical traveling salesman problem (TSP), 
which is essential to find an optimal path among n starting points so that each 
starting point is traversed only once, thus reducing the printing time of the 
part.

According to the characteristics of the fused deposition 3D printing process, 
when the part is sliced and layered, a single-layer cross-section of the part is 
obtained, in which the inner and outer contours are composed of multiple 
closed polygons, and the principle of determining the starting point of the 
polygon contour is to ensure that each polygon has only one starting point for 
printing and that the starting point of each polygon is the smallest distance 
between the principle of determining the starting point of the polygon profile 
is to ensure that each polygon has only one printing starting point and the 
distance between the starting points of each polygon is minimum. Assume that 
a layer section contains m polygons, i.e.J ¼ J1; J2; J3; � � � ; Jmf g, where J1 is the 
outermost polygon profile. Each polygon profile is composed of n vertices, and 
the set of vertices of any polygon Qi ¼ Qi1;Qi2;Qi3; � � � ;Qinf g.

If the set R ¼ S1; S2; S3; � � � ; Smf g of starting points of a layer after 3D 
printing slices satisfy the minimum value of f Rð Þ, then the points in R are 
the starting points of the polygon contour. Then, the objective function to 
determine the starting point of the polygon profile can be expressed as: 

f ðRÞ ¼
Xi¼1

m� 1
d Si; Siþ1ð Þ (1) 

d Si; Sj
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi � xj
� �2

þ yi � yj
� �2

q

(2) 

where: Si i ¼ 1; 2; � � � ;mð Þ is the print start point of the determined polygon 
profile. d Si; Sj

� �
denotes the distance from the starting point Si to the starting 

point Sj of the polygon contour. The coordinates of Si and Sj are xi; yið Þ and 
xj; yj
� �

, respectively.
In this paper, a modified shortest distance method will be used to determine 

each polygon contour’s starting point. The specific steps are as follows:

(1) Selecting the print origin P0 x0; y0ð Þ as the starting point, and setting 
S0 ¼ P0. According to the distance equation (2), the distance from the 
point S0 to each vertex of the outermost contour set J1 of the polygon 
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contour is solved in turn. Then, the vertex Pij with the shortest distance 
from the starting point S0 is taken out. So that S1 ¼ Pij, and the polygon 
contour set J1 is removed from the polygon contour set J.

(2) Then solve the distance from point S1 to each point in the polygon 
contour set J. We take out the nearest vertex Pij from point S1 and make 
S2 ¼ Pij, then remove the polygon contour Ji in which Pij is located from 
the polygon contour set J. The polygon contour Ji in which Pij is located 
is removed from the set of polygon contours J.

(3) According to step (2), calculating the distance between the point 
Sk� 1 k ¼ 3; 4; � � �;mð Þ and each vertex in the set J of polygon contours 
in turn and taking the vertex with the shortest distance as Sk until 
finding Sm in the last polygon contour of the set J, and finding S3, S4, 
� � �; Sn in turn to obtain the set of starting points 
R0 ¼ S1; S2; S3; � � � ; Smf g.

(4) After selecting the set of starting points R0, the optimization process is 
performed. First, we select S1 and S3 in the starting point set R0, and 
determine whether the line segment connecting S1 and S3 intersects 
with the polygon contour of S2. If so, S2 is updated to the intersection 
point closer to S3 than S1. If not, the set of vertices of S2 is traversed, and 
the sum of the distances from each vertex to the two endpoints of S1 and 
S3 is found, and S2 is updated to the vertex with the shortest sum of 
distances. If there is more than one vertex If there are more than one 
vertex with the shortest distance sum, the vertex closest to S3 is selected 
as the updated S2.

(5) Following the idea of step (4), update S3, S4, � � �; Sm� 1 in turn. If a point 
Sk� 1 k ¼ 3; 4; � � �;mð Þ is updated from S3, Sk� 1 needs to be updated again. 
If it is updated, the backtracking continues until S2. If no update is needed, 
the backtracking is stopped and the forward optimization continues.

(6) For the last starting point Sm, if Sm� 1 is still selected as the original 
vertex, then Sm remains unchanged. If Sm� 1 is updated, iterate the 
distances between the calculated point Sm� 1 and all the vertices in the 
set of multi-deformation contours where the starting point Sm is 
located, and update Sm to the vertex with the smallest distance value. 
Finally, a set of starting points R ¼ S1; S2; S3; � � � ; Smf g is obtained 
based on the improved shortest distance method.

Optimization Algorithm for Path Planning of 3D Printed Slice Contours

Path Planning Model

The goal is to find an optimal print path that satisfies the requirements of 
fused deposition 3D printing so that each start point is reached only once, and 
the start point is also the end point of the printed polygon profile, which can 
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reduce the air travel distance of the print head, shorten the part forming time 
and improve the printing efficiency while ensuring the print quality. From the 
set of starting points R ¼ S1; S2; S3; � � � ; Smf g in the previous section, the 
points in R are the starting points of the polygon contour, and the 3D printing. 
The mathematical model for contour path planning of 3D printed slices can be 
expressed as: 

g Si;Rð Þ ¼ min
Si;Sj2R

d Si; Sj
� �

þ g Sj;R � Sj
� �� �� �

(3) 

where: d Si; Sj
� �

denotes the distance from the start point Si of the polygon 
profile to the start point Sj of the polygon profile. R � Sj

� �
denotes the 

distance from the starting point Si to the starting point Sj of the polygon 
contour. R � Sj

� �
means the starting point Sj is removed from the set of 

starting points R.
In this paper, the polygon contour path optimization problem is trans-

formed into a convex optimization problem by constructing a path selection 
function as the objective function, at which time the objective function is 
convex, and then the global iterative calculation is completed by HNN for 
optimal solution, so as to achieve the determination of optimal path planning.

HNN

HNN searching for paths will appear to fall into very small. Therefore, when 
describing the stability of the equilibrium point, we should introduce the 
energy function, which is used as the objective function, and the objective 
function E Vð Þ is expressed as (Yu et al. 2022, 2022). 

EðVÞ ¼ �
1
2

X

i

X

j
Wi;jViVj �

X

i
IiVi þ

X

i

1
τi

ò
Vi

0 f � 1
i ðVÞdV (4) 

It can be proved that dE=dt0 and the zero point corresponds to the minimal 
value point of the objective function E Vð Þ, which indicates that HNN always 
converges to the minimal point of the objective function (Lin et al. 2022).

Thus, after processing, it becomes a convex optimization problem with 
constraints (Sun, Sun, Sathasivam, and Khan Bin Majahar Ali 2022): 

min EðVÞ ¼ �
1
2

X

i

X

j
Wi;jViVj �

X

i
IiVi þ

X

i

1
τi

ò
Vi

0 f � 1
i ðVÞdV (5) 

The equations 4 and 5 be the energy functions of a Hopfield neural network, 
which is a type of recurrent artificial neural network used for pattern recogni-
tion and optimization problems. The energy function is a measure of the state 
of the network, which is characterized by the binary activation values of its 
neurons.
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The first term of the energy function represents the interaction 
between neurons in the network, where Wi;jis the weight of the connec-
tion between neuron i and neuron j. This term is responsible for 
encoding the patterns that the network has learned to recognize, by 
adjusting the strengths of the connections between neurons based on the 
input patterns.

The second term of the energy function represents the external input to the 
network, where Ii is the external input to neuron i. This term is responsible for 
biasing the network toward certain patterns or states, by providing additional 
input to specific neurons.

The third term of the energy function represents the dynamics of the 
neurons, where τi is the time constant of neuron i and f � 1

i Vð ÞdV is the inverse 
of the activation function of neuron i. This term is responsible for controlling 
the rate of change of the neurons, by adjusting the time constant and the 
activation function of each neuron.

Overall, the energy function of the Hopfield neural network captures 
the complex dynamics of the interactions between neurons in the net-
work, as well as the external inputs and the dynamics of the neurons 
themselves.

The physical mechanisms underlying these interactions are complex and 
involve a combination of electrical and chemical processes, which have been 
extensively studied in the field of neuroscience. 

s:t:
Wi;j ¼Wj;i

Vi � 0
Ii � 0

8
<

:
(6) 

The solution set with n points requires n(n −1) neural units, and each 
element in the adjacency matrix of the solution set corresponds to 
a nerve element except for the diagonal elements. The neurons take 
only two states, 0 or 1. When the network of HNN converges to a stable 
equilibrium state, the neuron state function δij can be expressed as 
(Huang et al. 2022): 

δij ¼
1; i ¼ j
0; i�j

�

(7) 

The neuron state function δij is on the optimal path when the arc is 1, and δij is 
0 then it is not on the optimal path. The key step of the neural network 
solution is to set the parameter criteria, where the kinetic equation for the 
optimal path is obtained as: 
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dμij

dt
¼

� a2
Pi¼1

i�j
Vij �

μij
τ �

a1
2 þ

a3
2 ; ði; jÞ ¼ ðt; sÞ

� a2
Pi¼1

i�j
Vij �

μij
τ �

a4
2 mij �

a1
2 ; ði; jÞ�ðt; sÞ

8
>>><

>>>:

: (8) 

Vij ¼ g μij

� �
¼

1
2

1þ tan
μij

μ0

� �� �

(9) 

where: mij is the weight among the nodes of the road network, 
a1; a2; a3; a4 are the penalty coefficients. Solving the system of equations 
consisting of equation (8) and equation (9), when the HNN converges 
to the stable equilibrium state, the output neuron is the required opti-
mal path.

The flow of HNN to solve the optimal solution for 3D printing order is 
shown in Figure 2.

Start

Initializing network parameters

Constructing the set of solutions

Importing set of solutions into HNN 
networks for training and iterative 

computation

Is the upper limit of iteration 
reached?

Output the optimal solution

End

Add 1 to the number of 
iterations and clear the 
path calculation record

Y

N

Figure 2. The flow of HNN to solve the optimal solution for 3D printing order.
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IWOA-HNN Based 3D Printing Contour Slicing Path Optimization Model

IWOA Based on Nonlinear Weight Update Method

Probabilistic Preference Selection Mechanism
WOA assumes that the probability of a group of whales choosing to surround 
and feed on a prey is 50%, and that the probability p generated by each 
iteration of the algorithm is a random number uniformly distributed between 
[0, 1] (Hsu and Wang 2023). 

~X t þ 1ð Þ ¼
X�
�! tð Þ � ~A � ~D; p< 0:5

D0�
�!

ebl cosð2πlÞ þ X�
�! tð Þ; p � 0:5:

(

(10) 

where p is a random number between [0, 1]. This is inconsistent with the 
actual nature animal hunting criterion, after the predator finds the prey in 
nature, the predator. The probability of prey encirclement and prey predation 
varies with time. The probabilities of prey encirclement and prey predation 
show corresponding changes with time, so the probabilities p generated in 
WOA does not obey a uniform distribution. We simulate the prey preference 
behavior of whale schools in order to improve the convergence accuracy and 
global exploration ability of WOA. To improve the convergence accuracy and 
global exploration ability of WOA, we simulate the prey preference behavior of 
whales, and set the probability generation method not to obey uniform dis-
tribution but to vary with the iteration In order to improve the convergence 
accuracy and global exploration ability of WOA, we set the probability 
p generation method not to obey uniform distribution but to change with 
the iteration process, i.e., the WOA iteration process is divided into two stages 
(Pham, Chon, and Kyung Ahn 2023).

Figure 3. Fused Deposition 3D Printer.
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(1) Pre-iteration: simulate and speed up the process of searching and 
encircling prey by whales. In order to increase the probability of suc-
cessful prey capture, IWOA assumes that in the first iteration of the 
algorithm, the school of whales mainly performs the task of searching 
and encircling prey. Only the first equation in equation (10) is executed 
and the probability p< 0:5 is maximized (Liu et al. 2023).

(2) Late iteration: simulate and speed up the process of whale attack and 
prey capture. In order to improve the speed and probability of prey 
capture, it is assumed that in the late iteration the whales mainly per-
form the task of attacking and capturing prey. Only the second equation 
in equation (10) is executed and p � 0:5 at this time as much as possible 
(Liu et al. 2023).

In summary, the updated probability generation formula is given as 

p ¼ randnðÞ; 0< t< tmax
rsn 1; 0:75; 0:5; 0:1ð Þ; t � tmax

�

(11) 

where rsnðÞ is the skewed distribution random number generation method, 
and tmax is the maximum number of iterations of the algorithm. tmax is the 
maximum number of iterations of the algorithm. From equation (11), we can 
see that the probability of generation is not between [0, 1], so the edge of 
boundary is bounded: 

p ¼ 1; p> 1
0; p< 1

�

(12) 

In the early iterations, the probability values generated by hunting preferences 
were mostly between 0 and 0.5. While in the late iterations, the probability 
values generated by hunting preferences were mostly between 0.5 and 1.0. The 
modified probability generation strategy not only increased the prey encircle-
ment ability of the whale group in the early stage but also improved the prey 
predation ability of the whale group in the late stage.

Parameter Nonlinear Correction Strategy
In WOA, ~A and ~C are the important parameters controlling whale school 
search, encirclement and prey. The value of ~A is determined by the conver-
gence factor a. The convergence factor a showed a linear decreasing trend, 
indicating that the distance between whales and prey is linearly decreasing. 
The parameter ~A is in the range of [−2, 2] and converges to 0 with iterations, 
which simulates the hunting process of whale schools. The faster the para-
meter ~A converges, the faster the algorithm converges. The parameter ~C is 
a uniformly distributed random number between 0 and 2, which indicates that 
the distance between whales and prey varies randomly and has no significant 
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effect on the global exploration and local exploitation of the algorithm. The 
parameter ~C is a random number with uniform distribution between 0 and 2, 
which indicates that the random change of distance between whales and prey 
has no significant effect on the global exploration and local exploitation of the 
algorithm. Therefore, to improve the convergence performance of WOA and 
the ability of local escape extremes, the parameters are modified. The modified 
convergence factors a and ~C are: 

a ¼ 2 e� αt � e� βt� �
(13) 

~C ¼ 2randnðÞ (14) 

where: a 2 0; 2½ �, α is the parameter controlling the decay of parameter a, β is 
the parameter controlling the rise of parameter a, t is the number of current 
iterations, and randn denotes a normally distributed random number 
generated.

The updated convergence factor a has a non-linear decreasing trend and 
converges faster, while the updated parameter ~A converges faster, and the 
whale group can catch the prey faster when hunting, which means that the 
convergence speed of the algorithm is accelerated. The updated parameter ~C 
fluctuates randomly between [−4, 4], which increases the space for the whales 
to search for prey and improves the possibility of the algorithm to jump out of 
the local extremes. Overall, the updated parameters can significantly improve 
the global and local search ability of WOA relative to the original parameters.

Weight Position Update Strategy
In order to speed up the process of moving the whale group to the optimal 
whale individual and encircle the prey quickly, a nonlinear perturbation factor 
is introduced to enhance the algorithm’s global and local optimization finding 
ability. 

X�
�! tð Þ � ~A � ~D � ω; ~A

�
�
�
�< 1 (15) 

where X�
�! tð Þ is the optimal solution position vector in the current whale 

population, ~A and ~D are coefficient vectors. a is a nonlinear perturbation 
factor. To correspond to the two stages of the probabilistic preference selection 
mechanism proposed in this paper, ω is defined as 

ω ¼ 0:8 � sin
π

tmax
ðÞ

� �

(16) 

where: ω 2 0:3; 1:1½ �, t is the number of current iterations, tmax is the max-
imum number of iterations. From Eqs. (15) and (16), we can see that: in the 
iterative search process of the algorithm. The nonlinear perturbation factor ω 
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has two functions: when ω 2 0:3; 1½ �, it increases the ability of the algorithm to 
jump out of the local optimum. When ω 2 1; 1:1ð �, the algorithm increases the 
search step size and thus makes the algorithm converge faster.

For common chaotic perturbation factors, the ability of the algorithm to 
escape the poles is enhanced by its chaotic nature. The chaotic nature of the 
algorithm enhances the ability of the algorithm to escape from the extremes, 
which makes the solution of the global higher probability of solving the global 
optimal solution, but also makes the algorithm converge slower. The proposed 
nonlinearly perturbed algorithm can be used to solve the global optimal 
solution. For the proposed nonlinear perturbation factor ω, it not only 
enhances the ability of the proposed nonlinear perturbation factor ω not 
only enhances the ability of the algorithm to escape local extrema but also 
speeds up the convergence of the algorithm by increasing the search step 
length.

The proposed nonlinear perturbation factor ω not only enhances the ability 
of the algorithm to escape local extrema but also accelerates the convergence 
speed by increasing the search step. Therefore, compared with the chaotic 
perturbation factor, the proposed nonlinear perturbation factor has better 
performance than the chaotic perturbation factor. In summary, the algorithm's 
position update equation is modified as 

~X t þ 1ð Þ
X�
�! tð Þ � ~A � ~D � ω; p< 0:5

D0
!
� ebl � cosð2πlÞ þ X�

�! tð Þ; p � 0:5

(

(17) 

When ~A
�
�
�
�< 1, ω is calculated by equation (17), and when | ~A

�
�
�
� � 1, the value 

of ω is 1. ~D ¼ ~C � X�
�! tð Þ � ~X tð Þ

�
�
�

�
�
� is the distance between the optimal whale 

individual and other individuals.

Flow of IWOA-HNN

Encoding
To solve the optimization problem using IWOA, we first need to solve the 
encoding problem. Since the parameters of the HNN are optimized, we use the 
real number encoding approach in this paper, which means that we can 
directly represent an individual by a sequence of parameters. There are four 
parameters to be optimized, let Pt be the t-th generation of individuals, and the 
encoding is expressed as 

Pt ¼ Ut;Vt; μ; τf g (18) 

At the time of individual initialization, according to the given range of values 
for each parameter, the generated random numbers of the given range sepa-
rately to generate the first-generation population.

APPLIED ARTIFICIAL INTELLIGENCE e2219946-1709



Fitness Function
The fitness function is a criterion to evaluate the goodness of an individual. 
When an individual is decomposed into parameters, it enters into the solution 
process of the HNN, and the final energy function value after the network 
reaches the steady state after several calculations is taken as the fitness function 
of this individual. The fitness function can be expressed as 

fitness ¼ � EHop Ptð Þ (19) 

EHop is the energy value after a network optimization calculation with the 
parameters represented by this individual. Fitness takes a negative number to 
indicate that the lower the energy value, the greater the adaptation.

Flow of the Algorithm
The input of the algorithm is the search interval of each parameter, 3D 
printing model contour vertex coordinate value, population size, and iteration 
number; the output of the algorithm is the optimal parameter, the lowest 
energy function value, the optimal path, and the shortest distance. The algo-
rithm is as follows:

Step 1: For the parameters to be optimized, set the respective search inter-
vals according to previous experience, set the population size, randomly 
initialize the population, set the maximum number of iterations, and record 
the optimal individuals.

Step 2: Calculate the fitness value of each individual whale, which is the 
energy function value after network optimization calculation for the para-
meters represented by the individual.

Step 3: Update the position of each individual into the population based on 
probabilistic preference selection mechanism, parameter nonlinear correction 
strategy and weight position update strategy to check and correct the 
boundary.

Step 4: Re-solve the fitness values of all whale individuals to obtain the 
energy function values after the network optimization calculation and calcu-
late the energy values after the network optimization.

Step 5: Select the fitness-optimal individuals from the population, save and 
judge whether the maximum number of iterations is reached, if so, the 
algorithm ends and outputs the fitness-optimal individuals and their corre-
sponding parameters, the best route and the shortest distance, otherwise turn 
to step 2.

Experimental Analysis

In Fused Deposition Modeling (FDM) printing, the pattern used depends on 
the specific design of the 3D model being printed and the settings of the 3D 
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printer. The FDM printing process involves the extrusion of a thermoplastic 
material, typically in the form of a filament, through a heated nozzle. The 
extruded material is then deposited layer by layer in a specific pattern to build 
up the 3D model. The most common patterns used in FDM printing include 
rectilinear, honeycomb, and triangular infills, which determine the internal 
structure of the printed model and affect its strength and weight.

The specific patterns used in FDM printing are typically chosen based on 
several factors, such as the intended application of the printed part, the desired 
strength, and durability, and the printing time and material usage. In general, 
denser infill patterns such as rectilinear provide greater strength and durabil-
ity, while lighter patterns such as honeycomb reduce printing time and 
material usage. The choice of pattern can also affect the surface quality of 
the printed part, with some patterns producing a smoother finish than others.

To verify the effectiveness and feasibility of the proposed sliced contour 
path optimization algorithm, the contour path planning process is performed 
for the parts in Figure 1. The cross-sections of these two printed parts contain 
multiple complex polygonal contours (Figure 3).

First, the polygonal contours of the cross-sections are initially determined 
by the shortest distance method to obtain the set of polygonal contour starting 
points, and then the set of starting points is improved to obtain the optimized 
set of polygonal contour starting points. The polygon contour print start point 
data set is determined by the improved shortest distance method. The IWHO- 
HNN algorithm is applied to each point of the data set for path planning.

The part shown in Figure 1 was printed on a fused deposition 3D printer 
(with PLA material, 0.5 mm nozzle diameter, 0.2 mm slicing thickness, 60  
mm/s printing speed and filling speed, and 120 mm/s air travel speed. The part 
was sliced by zigzag for contour path planning, and the proposed method was 
compared with it. The experimental results of comparison between two 
methods about printing time and contour length are shown in Figure 4.

As can be seen from Table 1, the path planning algorithm proposed in this 
paper has reduced the printing time and contour path length compared with 
the traditional zigzag method. For part A, the part printing time has been 
shortened by 13% and the contour path length by 16.35% compared with the 
zigzag method. For part B, the part printing time has been shortened by 
32.12% and the contour path length by 27.42% compared with the zigzag 
method. It can be seen that the printing efficiency of fused deposition 3D 
printed slices is significantly improved when IWOA-HNN proposed in this 
paper used.

As can be seen from Figure 4, the path planning algorithm proposed in this 
paper reduces both the printing time and the single-layer contour path length 
compared to the traditional zigzag method. In the application of IWOA-HNN, 
the printing time of part A is reduced by 18.7 s and the contour path length is 
reduced by 92.6 mm compared with the zigzag method, and the printing time 
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(1) Printing time 

 (2) Contour length 

Figure 4. Comparison of printing time and contour length.

Table 1. Comparison between two methods about printing time and contour 
length.

Method Part Printing time/s Contour path length/mm

zigzag A 143.8 281.3
B 84.4 188.7

IWOA-HNN A 125.1 56.9
B 70.6 41.3
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of part B is reduced by 13.8 s and the contour path length is reduced by 15.6  
mm compared with the zigzag method. It can be seen that the printing 
efficiency of IWOA-HNN proposed in this paper is significantly improved 
when fused deposition 3D printed slices are used.

For the dimensional accuracy of 3D printing, the IWOA-HNN algorithm 
proposed in this paper is compared with the traditional zigzag method to 
measure the standard dimensions of the printed parts by the two methods, as 
shown in Figure 5.

As can be seen from Figure 5, the deviations of the length, width, and height 
of the part printed by this method are 0.11 mm, 0.07 mm, and 0.04 mm, 
respectively. The deviations of the length, width, and height of the part printed 
by the conventional zigzag method are 0.36 mm, 0.37 mm, and 0.21 mm, 
respectively, which shows that the dimensional accuracy of the part printed 
by this method has been improved.

The use of FDM printing has several industrial applications, due to its 
ability to produce complex geometries and functional parts with a wide 
range of materials. Here are a few examples:

(1) Prototyping: FDM printing is widely used in the manufacturing indus-
try for rapid prototyping, which allows designers and engineers to 
quickly test and iterate designs before mass production. This can help 
to reduce development time and costs, as well as improve the quality 
and performance of the final product.

(2) Tooling: FDM printing can also be used to produce custom tooling, 
such as jigs, fixtures, and molds, which are used in various 

Figure 5. Size accuracy comparison.
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manufacturing processes. This can help to improve the accuracy and 
efficiency of the production process, as well as reduce lead times and 
costs.

(3) Aerospace and Automotive: FDM printing is increasingly being used in 
the aerospace and automotive industries to produce lightweight and 
complex parts with high strength-to-weight ratios. This can help to 
improve fuel efficiency and reduce the overall weight of the vehicles 
while maintaining the necessary strength and durability.

(4) Medical: FDM printing is used in the medical industry for the 
production of customized implants, prosthetics, and surgical tools. 
This can help improve patient outcomes and reduce the cost of health 
care as well as provide a more personalized approach to medical 
treatment.

(5) Education: FDM printing is also used in education and research to teach 
students about additive manufacturing and to conduct experiments and 
studies on the properties and performance of various materials and 
geometries.

Overall, the industrial applications of FDM printing are diverse and continu-
ally expanding, driven by the ability of this technology to produce complex 
parts with high accuracy, speed, and customization.

Conclusion

In this paper, we propose an IWOA-HNN-based fused deposition 3D 
printing slicing contour path optimization control method. The method 
first explores the selection of the path starting point and determines the 
path starting point. Then, the HNN is used as the basic fused deposition 3D 
printing slice contour path optimization model, and IWOA is used to 
optimize the parameters of the HNN for its slow convergence speed and 
easy to fall into local optimum problem. Finally, based on IWOA-HNN, the 
path planning of the print start point is carried out to find the optimal 
printing sequence, which improves the efficiency of 3D printing and short-
ens the molding time. The results show that the proposed IWOA-HNN 
algorithm takes less time to print, has a shorter path, and has less error 
than the traditional path planning algorithm in the slicing software zigazag, 
which improves the printing efficiency and verifies the feasibility and 
effectiveness of the proposed method, and contributes to the further devel-
opment of 3D printing technology.
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