
 

 
British Journal of Mathematics & Computer Science  

6(1): 41-52, 2015, Article no.BJMCS.2015.060 
ISSN: 2231-0851 

 

SCIENCEDOMAIN international 
www.sciencedomain.org   

______________________________________________________________________________________________________________________ 

_____________________________________ 

*Corresponding author: digitalumar@yahoo.com, umaru.mohd@futminna.edu.ng, 
raphade@unilorin.edu.ng; 

  

 

A Class of Implicit Six Step Hybrid Backward 
Differentiation Formulas for the Solution of Second 

Order Differential Equations 
 

Umaru Mohammed1* and Raphael Babatunde Adeniyi2 
 

1Department of Mathematics and Statistics, Federal University of Technology, Minna,  
Niger State, Nigeria. 

2Department of Mathematics, University of ILorin, ILorin, Nigeria. 
 

Article Information 
 

DOI: 10.9734/BJMCS/2015/14769 
Editor(s): 

(1) Dariusz Jacek Jakóbczak, Computer Science and Management in this Dept., Technical University of Koszalin, Poland. 
Reviewers: 

(1) Mohamed Bin Suleiman, Institute of Mathematics, University Putra Malaysia, Malaysia. 
(2) Anonymous, China. 

Complete Peer review History: http://www.sciencedomain.org/review-history.php?iid=731&id=6&aid=7384 

 
 
 

Received: 20 October 2014 
Accepted: 20 November 2014 

Published: 17 December 2014 

_______________________________________________________________________ 
 

Abstract 
 

In this paper, we propose a class implicit six step Hybrid Backward Differentiation Formulas 
(HBDF) for the solution of second order Initial Value Problems (IVPs). The method is derived 
by the interpolation and collocation of the assumed approximate solution. The single 

continuous formulation derived is evaluated at grid point of and its second 

derivative at 1,.....2,1,   kjxx jn and  respectively, where k is the step 

number of the methods. The interpolation and collocation procedures lead to a system of (k+1) 
equations, which are solved to determine the unknown coefficients. The resulting coefficients 
are used to construct the approximate continuous solution from which the Multiple Finite 
Difference Methods (MFDMs) are obtained and simultaneously applied to provide the direct 
solution to IVPs. Numerical examples are given to show the efficiency of the method. 

Keywords: Hybrid method, backward differentiation formulas, collocation, interpolation, second 
order, multiple finite differences. 
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1 Introduction 
 
In recent times, the integration of Ordinary Differential Equations (ODEs) are investigated using 
some kind of block methods. This paper discusses the family of implicit Linear Multistep Method 
(LMM) for numerical integration of general second order ODEs which arise frequently in the area 
of science and engineering especially mechanical system, control theory and celestial mechanics 
and are generally written as: 
 

 
    (1) 

 
In practice the problems are reduced to systems of first order equations and any method for first 
order equations is used to solve them see Awoyomi [1]. It has been extensively discussed that due 
to the dimension of the problem after it has been reduced to a system of first order equations also, 
more often the reduced systems of ordinary differential equations (ODEs) is not well posed,  
unlike the given problem. The approach waste a lot of Computer time and human efforts, hence 
there is a need to develop algorithms to handle these classes of problems directly without any 
reduction to system of first order ODEs. 
 

Development of LMM for solving ODE can be generated using methods such as taylor’s series, 
numerical interpolation, numerical integration and collocation method, which are restricted by an 
assumed order of convergence. In this paper we will consider the contribution of multi step 
collocation technique  introduced by Onumayi et al. [2] by deriving our new method. Some 
researchers have attempted the solution of directly using linear multistep methods without 
reduction to system of first order ordinary differential equations the include Mohammed et al. [3], 
Yusuph and Onumayi [4] and Onumayi et al. [5]. 
 

Block methods for solving ODEs have initially been proposed by Milne [6]. The Milne’s idea of 
proceeding in blocks was developed by Rosser [7] for Runge-Kutta method. Also block Backward 
Differentiation Formulas (BDF) methods are discussed and developed by many researchers                   
[8-16]. The method of collocation and interpolation of the power series approximate solution to 
generate continuous LMM has been adopted by many researchers among them are (Houwen et al. 
[17], Fatunla [18], Jiaxiang [19]). 
 

In this paper we are suggested a construction of six step HBDF method, it is self-starting and can 
be applied for the numerical solution of IVPs (Cauchy problem) for second-order ODEs. 
 

2 Materials and Methods 
 
We seek an approximation of the form 
 

                                           (2) 
 

Where  are unknown coefficients to be determined and  and  are the number of 

interpolation and collocation points respectively. We then construct our continuous approximation 
by imposing the following conditions: 
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       (3) 
 

                                                  (4) 
 

We note that  is the numerical approximation to the analytical solution      

. 

 
Equations (3) and (4) lead to a system of (k+1) equations which is solved by Cramer’s rule to 

obtain . Our continuous approximation is constructed by substituting the values  into 

equation (2). After some manipulation, the continuous method is expressed as 
 

                    (5) 
 

Where  and  are continuous coefficients.  We note that since the general 

second order ordinary differential equation involves the first derivative, the first derivative 
formula 
 

   (6) 
 

         (7) 
 

         (8) 
 

2.1 Specification of Methods 
 
2.1.1 Six step methods with one- off -step point at interpolation 
 
To derive this methods, we use Eq.(5)  to obtained a continuous  5-step HBDF method with the 

following specification : r=7,s=1,k=6. We also express  and  as a functions 

of t, where  to obtain the continuous form as follows: 

 

        (9) 
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Evaluating (9) at  yields Hybrid Six step implicit method 

 

          
  (10) 

 
Taking the second derivative of equation of equation (9), thereafter, evaluating the resulting 

continuous polynomial solution at  we 

generate five additional methods 
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(13) 
 

 (14) 
 

    
          (15) 

 
Since our method is design to simultaneously provide the values of  

 at a block point ,  

the six equations (10)- (15) are not sufficient to provide the solution for seven unknown. 

. Thus, we obtain an additional method from (8), given 

by 
 

(16) 
 

The derivatives are obtained from (7) by imposing that 

thus, we have  
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2.2 Error Analysis and Zero Stability 
 
Following Fatunla [18] and Lambert [20] we define the local truncation error associated with the 
conventional form of (5) to be the linear difference operator 
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Assuming that y(x) is sufficiently differentiable, we can expand the terms in (17) as a Taylor 
series about the point x to obtain the expression 
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According to Henrici [21],  method (5) has order p if 
 

 
 

Therefore,  is the error constant and   the principal local truncation 

error at the point . It is establish from our calculations that the HBDF have higher order and 
relatively small error constants as displayed in the Table 1. 
 

Table 1. Order and error constants for the HBDF methods 
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                    (19) 
 

Where is the identity matrix of dimension k+1, is the matrix of dimension k+1 Case 
k=6. It is easily shown that (9)-(16) are normalized to give the first characteristic polynomial 

 given by  

 

 
 

Where an identity matrix of is dimension seven and  is a matrix of dimension seven 
given by 
 

 
 
Following Fatunla [18] the block method by combining k+1 HBDF is zero-stable, since from (19), 

satisfy  and for those roots with =1, the multiplicity does 

not exceed 2. The block method by combining k+1 HBDF is consistent since HBDF have order

. According to Henrici [21], we can safely ascertain the convergence of HBDF method. 
 

3 Results 
 
We report here a  numerical example taken from the literature. 
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Source:  Mohammed [8] 
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Exact Solution  

Source:  Awari [22] 
 
Problems 3 
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Exact Solution 
 

Source: Badmus and Yahaya [23] 
 

4 Discussion 
 
The HBDF methods are implemented as simultaneous numerical integration for IVPs without 
requiring starting values and predictors (Tables 2, 3 and 4). We proceed by explicitly obtaining 

initial conditions at , n=0,k,….,N-k using the computed values and 

  knknx   _  over sub-intervals  which do not overlap. We give 

examples to illustrate the efficiency of the methods. 
 
We report here a numerical example taken from the literature. 
 

Table 2. Showing exact solutions and the computed results from the proposed methods for 
problem 1 

 
x Exact solution Proposed method Error in proposed 

method 
Error in 
mohammed [8] 

0 0 0 1.4800000E-08 2.1980000E-05 
0.1 -0.105170918 -0.1051709032 3.8100000E-08 6.0704000E-06 
0.2 -0.221402758 -0.2214027199 6.2400000E-08 1.0051000E-05 
0.3 -0.349858808 -0.3498587456 8.6200003E-08 1.4025300E-05 
0.4 -0.491824698 -0.4918246118 1.1030000E-07 1.7993400E-05 
0.5 -0.648721271 -0.6487211607 1.3360000E-07 2.1616200E-05 
0.6 -0.822118800 -0.8221186664 1.5400000E-07 2.7993000E-05 
0.7 -1.013752707 -1.013752553 1.8200000E-07 3.4561000E-05 
0.8 -1.225540928 -1.225540746 2.1000000E-07 4.1114000E-05 
0.9 -1.459603111 -1.459602901 2.3800000E-07 4.7656000E-05 
1.0 -1.718281828 -1.718281590 1.4800000E-08 2.1980000E-05 
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Table 3. Showing exact solutions and the computed results from the proposed methods for 
problem 2 

 
x Exact solution Proposed 

method 
Error in proposed 
method 

Error in  awari 
[22] 

0 1 1 0.0000000E+00 0.0000E-00 
0.1 1.094837582 1.094837655 7.300000E-08 1.1570E-07 
0.2 1.178735909 1.178736102 1.9300000E-07 3.0990E-07 
0.3 1.250856696 1.250857010 3.1400000E-07 5.0550E-07 
0.4 1.310479336 1.310479768 4.3200000E-07 6.9570E-07 
0.5 1.357008100 1.357008646 5.4599999E-07 8.7890E-07 
0.6 1.389978088 1.389978742 6.5400002E-07 1.0540E-06 
0.7 1.409059874 1.409060598 7.2400000E-07 1.0080E-06 
0.8 1.414062800 1.414063636 8.3600000E-07 9.2260E-07 
0.9 1.404936878 1.404937018 1.4000000E-07 8.2610E-07 
1.0 1.38177329 1.381774327 1.0370000E-07 7.2160E-07 

 
Table 4. Showing exact solutions and the computed results from the proposed methods for 

problem 3 
 

X Exact value Approx value Present error Yahaya and 
badmus [23] 

0.1 1.050041729 1.050041724 5.00E-10 5.891E-06 
0.2 1 1.100318692 1.67E-06 8.2399E-05 
0.3 1.151140436 1.151028384 1.12E-05 3.46421E-04 
0.4 1.202732554 1.202585545 1.47E-05 7.52101E-04 
0.5 1.255412817 1.255265756 1.47E-05 1.380283E-03 

 

5 Conclusion 
 
In this paper we developed a uniform order 1-block 6 –point integrators of orders (6,6,6,6,6,6) and 
the resultant numerical integrators posses the following desirable properties. 
 

(I) Zero-stability i.e stability at the origin 
(II) Facility to generate the solution at six point simultaneously 
(III) It is a convergence schemes 

 

Hence, an improvement over other cited works. 
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