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Abstract

One of the ideas that explains the existence of supermassive black holes (SMBHs) that are in place by z∼7 is that
there was an earlier phase of very rapid accretion onto direct-collapse black holes (DCBHs) that started their lives
with masses ∼104–5 M . Working in this scenario, we show that the mass function of SMBHs after such a limited
time period, with growing formation rate paired with super-Eddington accretion, can be described as a broken
power law with two characteristic features. There is a power law at intermediate masses whose index is the
dimensionless ratio α≡λ/γ, where λ is the growth rate of the number of DCBHs during their formation era, and γ
is the growth rate of DCBH masses by super-Eddington accretion during the DCBH growth era. A second feature
is a break in the power-law profile at high masses, above which the mass function declines rapidly. The location of
the break is related to the dimensionless number β=γ T, where T is the duration of the period of DCBH growth. If
the SMBHs continue to grow at later times at an Eddington-limited accretion rate, then the observed quasar
luminosity function can be directly related to the tapered power-law function derived in this Letter.

Key words: accretion, accretion disks – black hole physics – galaxies: high-redshift – quasars: general – quasars:
supermassive black holes

1. Introduction

A key challenge to the theory of the formation of
supermassive black holes (SMBHs) in the early universe is
the observation of very massive (M≈109 M ) and luminous
(L1013 L ) quasars already in place by z∼7, when the
universe was just ∼800Myr old (e.g., Fan et al. 2006;
Mortlock et al. 2011; Wu et al. 2015; Bañados et al. 2018; see
also the review by Woods et al. 2018). Objects that accumulate
at least a billion M in less than a billion years after the big
bang put a strain on the normal ideas of Eddington-limited
growth of black hole seeds that originate from Population III
stellar remnants. Starting from a seed mass M0, Eddington-
limited growth leads to a mass

( ) [ ( ) ]= -- M t M t texp 10
1

E , where »t 450 MyrE and ò
(≈0.1) is a radiative efficiency factor. Population III stars are
thought to have masses 40 M (Hosokawa et al. 2011), and
their remnants would be less massive, so that there is
apparently not enough time available to reach M∼109 M .
These constraints show that a combination of both more-
massive initial seeds and a super-Eddington growth rate may be
necessary to account for the observed SMBHs at z∼7.

One promising pathway is that of direct-collapse black holes
(DCBHs; Bromm & Loeb 2003). The idea is that Lyman–
Werner (LW) photons (having energies 11.2–13.6 eV) from the
first Population III stars can propagate far from their sources
and dissociate H2 in other primordial gas clouds. Without H2

cooling these gas clouds equilibrate to temperatures
T∼8000 K set by atomic cooling, which means that the Jeans
mass is ∼105 M at a number density n=104 cm−3, as
opposed to ∼103 M in a normal Population III star formation
environment or ∼1 M in present-day star formation. Due to
their large masses, these collapsing cloud fragments may be
able to collapse directly into black holes, after a brief period as
a supermassive star (Bromm & Loeb 2003) or quasi-star
(Begelman et al. 2006, 2008), if the infalling matter can
overcome the angular momentum barrier and disruptive effects
of radiative feedback. An interesting joint solution to these

barriers is proposed by Sakurai et al. (2016) based on the
episodic accretion scenario of Vorobyov et al. (2013) that is
powered by gravitational instability in a circumstellar disk. In
this model the episodic accretion results in a lower surface
temperature of a supermassive star, thereby also reducing the
effect of radiative feedback that can limit mass accumulation in
the case of normal Population III star formation (Hosokawa
et al. 2011). The DCBH model has been extensively developed
in the context of galaxy-formation models, resulting in a
scenario where the formation of atomic cooling halos is seeded
by the first stars, and the subsequent DCBH produce LW
radiation that triggers the formation of other atomic cooling
halos and DCBH in a kind of chain reaction process (Yue et al.
2014). A rapid period of growth of atomic cooling halos, and
therefore DCBH formation, ensues, with the growth rate at any
time related to the instantaneous number of DCBHs. The
rapidly growing phase of DCBH creation is also a period of
possible rapid mass growth through super-Eddington accretion
(Inayoshi & Haiman 2016; Pacucci et al. 2017). The whole
process comes to a rapid halt, however, when the gas in the
atomic cooling halos is photo-evaporated by the ambient
radiation field. According to Yue et al. (2014) the DCBH era
lasts from z≈20 to z≈13, or a time period T≈150Myr,
after which DCBH formation is completely suppressed. Here,
we adopt the picture emerging from their semi-analytic model;
however, we note that numerical simulations (e.g., Agarwal
et al. 2012; Chon et al. 2016; Habouzit et al. 2016) have not
reached a consensus on the DCBH formation rate or the
termination time of their formation.
In this Letter, we seek a simple model of the growth of

DCBHs in the early universe that captures just the essential
features of the scenario described above, in order to reach an
analytic understanding of the mass and luminosity functions of
observable quasars that form through the DCBH scenario.
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2. Background

Yue et al. (2014) estimated that the rapid formation of
DCBHs occurs between z≈20 and z≈13, after which it ends
abruptly. The semi-analytic model of Dijkstra et al. (2014) is
broadly consistent with this and shows that the number density
of DCBHs nDCBH grows rapidly during a similar interval.

Figure 1 shows the results of Dijkstra et al. (2014) plotted
against time after the big bang, for two possible values of the
critical flux of LW photons Jcrit (written in units of 10−21 erg
s−1 cm−2 Hz−1 sr−1) that is needed to create the atomic cooling
halos, which are DCBH progenitors. The calculation of Jcrit
(e.g., Shang et al. 2010) includes the additional effect of near-
infrared radiation with energy above 0.76 eV that can also
inhibit the formation of H2 by dissociating the H− ion, which is
an intermediary in the H2 formation chain. Although significant
uncertainties exist in the actual number of DCBHs created, due
to uncertainties in the value of Jcrit that depends on the source
density and spectra, escape fraction from the host halos, etc.,
the slope of growth, ( ) /l ºt d n dtln DCBH , is similar in all of
their modeled cases. For the two cases shown here, we find an
average value λ measured between data points from z=20 to
z=12, which corresponds roughly to the period of rapid
DCBH formation. For their canonical model =J 300crit the
best-fit line yields λ=27.7 Gyr−1, and for =J 100crit the best
fit is λ=17.7 Gyr−1. Here we use the canonical model and
adopt λ=28.0 Gyr−1, which is slightly steeper than the best
fit. This in the interest of rounding off, and also because there is
evidence that the DCBH growth era ended just prior to this data
point, at z≈13 (Yue et al. 2014); this would tend to drive the
slope to a slightly greater value.

Each DCBH can be modeled as growing in mass at an
exponential rate, but the starting times of the accretion process
will be spread throughout the DCBH formation era. However,
the super-Eddington growth will cease for all DCBHs at about
the same time, so that there will be a distribution of accretion

times among the population of DCBH. This is a key part of our
model as developed in Section 3.
The growth of an individual DCBH is thought to proceed by

default at an Eddington-limited rate, but periods of super-
Eddington growth are also possible (Pacucci et al. 2017). The
Eddington luminosity is

( )
p

s
=L

cGm M4
. 1

T
E

p

where M is the black hole mass, mp is the proton mass, and
( )( )s p= e m c8 3T

2
e

2 2 is the Thomson cross section in which
me is the electron mass. At this luminosity the radiation
pressure can balance the gravitational pressure. The accretion
of mass to very small radii comparable to the Schwarzschild
radius will release a significant portion of the rest mass energy,
hence the luminosity is normally estimated as ˙= L M cacc acc

2,
where Ṁacc is the mass accretion rate and ò is the radiative
efficiency, typically set to 0.1. Because the accretor will gain
rest mass at the rate ˙ ( ) ˙= - M M1 acc, we equate Lacc with LE

to find that

( ) ( ) ( )g g=  =
dM

dt
M M t M texp , 20 0 0

where ( ) ( )g = -   t10 E and

( )= =t e Gm m c2 3 450 MyrE
4

p e
2 3 is the Eddington time.

Here we follow Pacucci et al. (2017) in accounting for the
idea that accretion (especially of the super-Eddington variety)
may be episodic, by identifying the duty cycle as the fraction
of time spent accreting, and the Eddington ratio fEdd that is =1
for Eddington-limited accretion but can be <1 for sub-
Eddington accretion and >1 for super-Eddington accretion.
We use a generalized accretion rate γ=χγ0, where c = fEdd
is a correction factor to account for the fact that the accretion
rate could be super-Eddington for some periods of time. The
quantitatively relevant parameter is c = fEdd. Pacucci et al.
(2017) found that objects with M105 M can have high-
efficiency accretion,  0.5 1 and  f1 100Edd , but
objects with M105Me have low-efficiency accretion,

 0 0.5 and  f0 1Edd . The simplest assumption is
that χ=1 for Eddington-limited growth, but our model allows
for the putative super-Eddington growth in the DCBH
formation era.

3. Mass Function

We assume that the distribution of initial black hole masses
is lognormal; i.e., the differential number density per
logarithmic mass bin is distributed normally:

⎛
⎝⎜

⎞
⎠⎟

( )
( )

ps
m

s
= -

-dn

d M

M

ln

1

2
exp

ln

2
. 3

0 0

0 0
2

0
2

Here μ0 and σ0 are the mean and standard deviation of the
distribution of ln M0, respectively. A lognormal distribution for
the birth mass function of DCBH seeds is consistent with the
results of Ferrara et al. (2014) for intermediate masses
( ( )< <M M4.75 log 6.25), and we fit those results with
μ0=11.7 (corresponding to a peak at  =M Mlog 5.1) and
σ0=1.0.

Figure 1. Growth of the number density of DCBHs nDCBH. The data points
correspond to nDCBH (in cMpc−3) at redshift values z=20.3, 18.2, 16.2, 14.1,
12.1, and 10.0, corresponding to cosmic times 0.18, 0.20, 0.24, 0.29, 0.36, and
0.47 Gyr after the big bang, respectively, and are taken from Dijkstra
et al. (2014).
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Because the growth law implies that

( ) ( )g= +M t M tln ln , 40

we can write the mass function at a later time as
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The accretion time t may not be a fixed constant that applies to
all objects, therefore we can integrate over a function f (t)
(which has units of inverse time) that describes the distribution
of accretion times. In this case the final observed mass function
f (ln M)≡dn/d ln M is

⎛
⎝⎜

⎞
⎠⎟

( )
( ) ( )ò ps
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s

-
- - ¢

¢ ¢
M t

f t dt
1
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2
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2

Here f (t′) is a normalized distribution of accretion times t′ and
T is the maximum possible accretion time. The function f (t′) is
determined by considering the creation rate of black holes in
the DCBH scenario. The number density n of black holes
grows in a type of chain reaction (Dijkstra et al. 2014; Yue
et al. 2014) with the instantaneous creation rate dn/dt=λ(t) n.
The simplest case, where λ(t)=λ, has a constant value leads
to pure exponential growth. If this growth continues from a
time t=0 when the first DCBH is created until a time T when
the creation of all DCBHs is terminated, then each black hole
that was created at time t has an accretion lifetime t′=T− t in
the range [0, T]. The normalized distribution of accretion
lifetimes t′ is then

( ) ( )
[ ( )]

( )l l
l

¢ =
- ¢

- -
f t

t

T

exp
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Using the indefinite integral identity
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valid for a>0, we evaluate the integral in Equation (6) using
Equation (7) and obtain a full expression
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Here α≡λ/γ, the dimensionless ratio of the growth rate of
DCBH formation to the growth rate of the mass of individual
DCBHs, and β≡γ T, the dimensionless number of DCBH
growth times within the DCBH formation era.

In the limit  ¥T , the function becomes
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which is the modified lognormal power-law (MLP) function
(Basu et al. 2015). Equation (9) represents a tapered version of
the MLP, with the break in the power law occurring at

( )m b» +Mlog 2.30 , meaning that the peak of the original
lognormal is shifted in ln M by an amount β=γT. Henceforth,
we refer to Equation (9) as the tapered power-law (TPL)
function.
Figure 2 shows the TPL function using parameter values

obtained from models of the DCBH growth era. We pick
μ0=11.7 and σ0=1.0 based on the model of Ferrara et al.
(2014). From Dijkstra et al. (2014; see Figure 1) we adopt
λ=28.0 Gyr−1 for the era of rapid DCBH formation using
their canonical model. The length of the DCBH growth era is
T=0.15 Gyr (Yue et al. 2014). For accretion growth during
this period we expect that super-Eddington growth can occur
(Dijkstra et al. 2014) but with a wide range of possible values.
We pick a series of values χ=[1, 2, 3] covering Eddington-
limited growth and two values of super-Eddington growth. As
γ=χγ0=20χGyr−1, this leads to α=[1.4, 0.7, 0.47] and
β=[3, 6, 9] for our adopted values of λ and T. Figure 2 shows
that the super-Eddington growth models allow for the
development of a mass function that has both a visually
evident power-law profile as well as a notable break in the
power law at high mass. This break is a marker of the end of

Figure 2. The tapered power-law (TPL) distribution and an underlying
lognormal distribution. Parameters are chosen as plausible values based on
models of the DCBH growth era and also illustrate important features of the
distribution. Shown is an underlying lognormal distribution (dashed line) with
μ0=11.7, σ0=1, and the TPL distributions generated from it assuming either
of the following: Eddington-limited growth with χ=1 (red line), super-
Eddington growth with χ=2 (green line), and super-Eddington growth with
χ=3 (blue line). Note that μ0=11.7 corresponds to a peak mass 105.1 M .
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the DCBH growth era, as both the creation of new DCBH as
well as their super-Eddington growth ceases after the time
interval T.

4. The Quasar Luminosity Function

Once the DCBH growth era has ended at z≈13, the
population of DCBHs may continue to undergo Eddington-
limited accretion, and the luminosity function can be estimated
using Equation (1). Over time, the mass function f (ln M) will
retain its shape but move to the right because ln M at the end of
the DCBH era will shift by an amount γΔtz, where Δtz is the
time interval between the end of the DCBH era (z≈13) and an
observable redshift z. However, the duty cycle, and therefore
c = fEdd, may be =1 in this era, rendering mass growth to
small fractional levels. A random sampling of  and fEdd for
individual object growth after z≈13 shows that the overall
distribution maintains its shape and moves to the right in Mlog .
We also note that the mass growth of SMBHs may be
quenched above ∼1010 M (Inayoshi & Haiman 2016; Ichi-
kawa & Inayoshi 2017), in agreement with results of current
quasar surveys (Ghisellini et al. 2010; Trakhtenbrot 2014).

Assuming that observed quasars are undergoing Eddington-
limited accretion, we use Equation (1) to transform the mass
function into a luminosity function. We expect that the mass of
the quasars are not growing substantially during this time, for
reasons discussed above, and we are really most interested in
fitting the shape of the function, which should remain much the
same for a variety of redshifts in the post-DCBH-growth era.
Figure 3 shows the inferred quasar luminosity function (QLF)

( )f µL dn d Llog for a suitable pair of values for α and β,
overlaid on z=3 quasar bolometric luminosities compiled by
Hopkins et al. (2007). Here we are only interested in fitting the
shape of the luminosity function and not the absolute number
of sources. The normalization can be scaled to fit the observed
number at any redshift.

We hold (μ0, σ0) fixed at their model-inspired values (11.7,
1.0) as they are most important in determining the unobserved

low end of the luminosity function. We effectively fit
observations with two parameters (α, β). This is in contrast
to the usual practice of fitting the observed QLF with a double
power law (e.g., Hopkins et al. 2007; Masters et al. 2012;
Schindler et al. 2019) that requires three parameters: the two
power-law indices and a joining point.
In our model, the values of α and β that fit the QLF are not

merely mathematical parameters. Instead, they reveal the
history of the putative DCBH growth era. For the adopted
DCBH number growth rate λ=28.0 Gyr−1 and a duration
T=0.15 Gyr, and individual masses growing at a rate
γ=χγ0, the two fitted parameters are related to the super-
Eddington factor χ by

( )a c= -1.4 , 111

( )b c= 3 . 12

We find an excellent fit to the QLF with [α, β]=[0.5, 8.4].
Both the values of α and β imply a super-Eddington factor
χ=2.8, revealing the self-consistency of our model. In
principle the QLF could have been fit with any α and β that
could individually imply very different values of χ. In that case
our underlying model would be inconsistent, or at least need to
explore values of λ and T that were quite different than those
implied by current models of the DCBH growth era.
To elaborate on the above point, our model could in

principle also be applied to SMBH formation from alternate
scenarios such as Population III remnants (Madau & Rees 2001;
Whalen & Fryer 2012) or mergers of primordial Population III
stars (Boekholt et al. 2018; Reinoso et al. 2018). It could apply
as long as the black hole production could be described as
growing exponentially at some rate λ and for a finite time T,
during which the individual masses grew at an Eddington-
limited or super-Eddington rate.

5. Summary

We have presented an analytic model that captures some
essential features of the DCBH growth scenario and uses them
to derive an analytic mass function and by implication a
luminosity function. A double power-law function has been
commonly used in the literature to mathematically fit the QLF.
Here, we instead use a physically motivated formula based on
the scenario of the DCBH growth era that has been developed
by many researchers. It is not a double power law at high mass
and luminosity, but rather a TPL. We believe that the rapid fall
off in the QLF at high luminosity is better modeled as a tapered
part of a power law rather than as a second power law. The
break point of the power law identifies the end of the era of
DCBH creation.
We have fit an observed QLF with a power-law index

α=0.5 and the break-point-related parameter β=8.4. These
are consistent with a period of rapid mass growth of DCBH
with super-Eddington factor χ=2.8, for a time period
T=150Myr during which the growth rate of the number
density nDCBH was λ=28.0 Gyr−1. In principle, the best-fit
values to QLF data can be used to constrain such theoretical
models of DCBH growth.
Our model has two key components. Initially, high mass

∼105 M seeds grow rapidly in number during a limited time
period in the early universe, because DCBH formation leads to
the emission of LW photons that seed the formation of other
DCBH. These objects also live within gas-rich halos and

Figure 3. Probability distribution of quasar luminosities. The TPL function is
plotted with parameters α=0.5 and β=8.4 in which μ0 and σ0 are held fixed
at 11.7 and 1.0, respectively. Data points are estimates of bolometric luminosity
of quasars at z=3 taken from Hopkins et al. (2007).
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undergo super-Eddington mass accretion. Then at some time
both the formation of DCBH, as well as the super-Eddington
accretion of the existing DCBH, comes to a rapid halt due to
the photoevaporation of the host halos. What remains is a TPL
distribution of masses and therefore also of luminosity if the
observed quasars are undergoing subsequent Eddington-limited
accretion. Future modeling can relax some of these assump-
tions, for example the formation of DCBH may continue long
enough to outlive the period of rapid (super-Eddington) mass
growth, especially if driven by mechanisms other than the LW
flux (Wise et al. 2019), and the super-Eddington accretion may
not apply to all objects (Pacucci et al. 2017; Latif et al. 2018).
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