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Abstract 
 

Aim: To examine the suitability of Artificial Neural Network (ANN) in predicting infant mortality and 
compare its performance with Logistic Regression (LR) model. 
Study Design: A cross-sectional population based study was conducted. The 2013 Nigeria Demographic 
Health Survey (NDHS) data were used. 
Place and Duration of Study: The study was conducted in Nigeria and the fieldwork was carried out 
from February 15, 2013, to May 31, 2013.  
Methodology: Data were partitioned into training and testing sets with ratio 7:3. Logistic and ANN 
models were fitted on the training set and were validated using the testing sample. Akaike Information 
Criterion (AIC) and Area under curve (AUC) were used as criteria for comparing the two models. The 
discriminative ability was measured using sensitivity and specificity. Variable importance analysis was 
also conducted to determine the magnitude of contribution of each predictor to the outcome. 
Results: The sensitivity of the classification model was 67% and 76% for the LR and the ANN models 
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respectively. Specificity of the prediction was 94% for the two models. Overall accuracy was 
approximately 81% and 83% for LR and ANN respectively. The AIC values were 9462 and 9614 for 
ANN model and LR model respectively. Area under curve was 0.621 and 0.637 for the LR model and the 
ANN model respectively. The variable importance analysis showed that preceding birth interval less than 
24 months and not receiving tetanus toxoid injection during pregnancy had the highest positive 
contribution to infant mortality.  
Conclusion: The artificial neural network model had a higher sensitivity than the logistic regression 
model. Preceding birth interval of less than 24 months and non-reception of tetanus toxoid injection by 
mothers’ during pregnancy were important predictors of infant mortality in Nigeria. 
 

 
Keywords: Model comparison; classification models; variable importance analysis; infant mortality.   
 

1 Introduction 
 
The most frequently used models in clinical and public health risk estimation are logistic regression and 
artificial neural network [1]. Over time, medical researchers have conventionally used the logistic regression 
simply because of the dichotomous nature of study outcome variables.  
 
Logistic regression is a class of generalised linear models and a type of regression model used when the 
outcome variable is qualitative and has binary indicators. In the current study, the outcome event is infant 
mortality i.e. the proportion of a cohort of children born in the last five years who had died before their first 
birthday. The relationship between the independent variables such as socio-demographic, environmental, 
health facility related and child characteristics can be represented by a logistic regression model of the form;  
� = �� + ���� + ���� + �	�	 + ⋯ + ����  where y is the response variable (infant mortality) with a status 
1 if the child died before reaching one year and 0 if otherwise. The expected value of y is the probability that 
y=1 which makes the range of y to be limited between 0 through 1. Logit link function is therefore used to 
transform the output of a linear regression and present it in form of a probability. Therefore y is expressed as 
logit (p) where p is the probability of dying before the age of one. The logit transformation is written as the 
log odds: 
 

 ������� = log ��� = �� � �
���� =  �� + ���� + ���� + �	�	 + ⋯ + ����. 

 
Artificial neural networks (ANN) on the other hand are algorithms used to; perform non-linear statistical 
modelling and provide a new alternative to logistic regression [2]. These algorithms are used to estimate 
unknown functions that can depend on a large number of inputs. The network is divided into layers namely; 
the input layer, the hidden layer and the output layer. The hidden nodes in artificial neural networks allow 
the model to detect complex relationships present between the input variables and infant mortality. In fact, a 
special ANN with no hidden node has been made known to be identical to a logistic regression model [3]. 
The ANN produces a variable importance analysis chart that illustrates the contribution of each variable to 
infant survival status. Artificial neural networks are used as a black box model: a certain number of inputs 
produce a desired output, the model achieves this result through a self-organizing process which involved: 
multiplication, summation and activation. At the input level, the inputs are weighted i.e. every input value is 
multiplied with an individual weight. In the middle section the sum of all weighted inputs and bias is 
computed. At the final stage, the sum of the previously weighted inputs and bias is passed through a transfer 
function. Artificial neural network models work in two phases; the Learning phase and the Evaluation phase. 
In the learning phase, the ANN adapt to the internal parameters. 
 
This study used the artificial neural network with feed-forward topology which has only one condition: 
information must flow from input to output in only one direction with no back-loops. This network has no 
limitations neither on number of layers nor the type of transfer function used in individual artificial neuron 
nor the number of connections between the individual artificial neurons. Successful applications of artificial 
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neural network to predict medical outcomes have been achieved in the past [4-6]. ANN has also been used to 
predict mortality risk in preterm infants [7].  
 
Studies which compared the model accuracy of ANN and GLM in terms of model accuracy showed that 
ANN performed better than the GLM [5,8-10]. Green et al. [11] applied the logistic regression and the 
artificial neural network to predict acute coronary syndrome in electrocardiogram (ECG) data. The finding 
from this study showed ANN model was at an advantage when the effective odds ratios from the ANN 
model were compared with the odds ratios obtained from the logistic regression model.   
 
A comparison of ANN and logistic regression was conducted on lung cancer data in Turkey [12] using Area 
Under the Curve (AUC), sensitivity and specificity criteria. The ANN outperforms logistic regression for all 
criteria. The ANN also outshines the logistic regression model in terms of performance when the two were 
applied in predicting mortality among critical care patients. In the prediction of pregnancy using In Vitro 
Fertilisation (IVF) treatment, logistic regression turned out to be suitable for theoretical interest while ANN 
was more useful in clinical prediction [13]. However, some research findings have also revealed that both 
the logistic regression model and the ANN model are capable of achieving accurate results [14-16].  
 
Nigeria is a country with a large population of young people and infant mortality is still an issue of major 
public health concern. In Nigeria, the infant mortality rate is 68 per 1,000 live birth and the country losses 
about 2,300 under-five years old children on daily basis [17-19]. A quarter of the deaths among under-five 
children is accounted for by the death of new-borns which occur mostly within the first week of life [20]. 
This input makes Nigeria the second largest contributor to the under–five and maternal mortality rate in the 
world.  
 
Most studies on infant mortality either used logistic regression or Cox-proportional hazard model [21-26] 
with very few using ANN model. Also information on the comparison of the performance of logistic 
regression and ANN is still a grey area for research in Nigeria. Therefore, this study compares the 
performance of ANN and logistic regression in predicting infant mortality in Nigeria. It also applies ANN to 
infant mortality to check whether the efficient predictive ability of ANN will be maintained in mortality data 
and to test its ability to detect new factors. 
 

2 Methodology  
 
2.1 Data source 
 
The data used was extracted from the child recode dataset of the Nigeria Demographic Health Survey 
(NDHS 2013); the dataset was cleaned and variables were recoded to suit the study [27]. The NDHS was a 
cross-sectional population based study design.The 2013 NDHS sample was nationally representative and 
covers the entire population residing in non-institutional dwelling units in the country. Data on birth history 
were collected from women of reproductive age. Specifically, background information about the under-five 
children were obtained through verbal reporting by their mothers. In addition, measurements were made 
where possible to get information on nutritional status of the children.  
 

2.2 Study population 
 
The target population were children less than 12 months old i.e. infants.  
 
2.3 Study variables 
 
2.3.1 Outcome variable 
 
The main outcome variable was infant mortality (this was obtained from the survival status of the children 
from age 0 to 11 months). Each death case was coded as 1 and each non-death (living) case was coded as 0.  
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2.3.2 Explanatory variables 
 
The choice of the explanatory variables was based on previous studies on factors influencing infant mortality 
[17,19-22,28-32]  
 
Maternal factors 
 
Age at birth 
Educational level  
Marital status 
Birth interval  
Desire for the pregnancy 
Wealth index 
 
Child factors 
 
Sex 
Size at birth 
Birth order 
 
Environmental/Health related factors 
 
Region 
Religion 
Place of residence 
ANC attendance 
Tetanus toxoid injection 
Place of delivery 
Delivery by caesarean section 
Delivery assistance 
Source of drinking water 
Type of toilet facility 
Availability of electricity 
 
2.3.3 Akaike information criterion (AIC) 
 
Akaike information criterion (AIC) is a penalized-likelihood criterion which is used for choosing best 
predictor subsets in regression and often used for comparing non nested models, which ordinary statistical 
tests cannot do. AIC is an estimate of a relative distance between the unknown true likelihood function of the 
data and the fitted likelihood function of the model, so that a lower AIC means the model is nearer to the 
truth. AIC for a model is usually illustrated as [-2logl + kp], where l is the likelihood function, p is the 
number of parameters in the model, and k= 2.  
 
2.3.4 Receiver operating characteristic 
 
The receiver operating characteristic is mainly used in radiological researches to illustrate the diagnostic 
accuracy of imaging examinations. The observer’s prediction in each case is plotted against the true 
condition of the case to detect misclassification of cases. One criterion to assess the quality of a 
classification model is discrimination. The discriminative ability of the logistic regression model and the 
artificial neural network model was likened using the Receiver’s Operating Characteristics (ROC) curve. 
This is usually plotted as true positive (TP) versus false positive (FP). The ROC curve is an indication of an 
observer’s degree of diagnostic certainty. The area under this curve is commonly used as a global indicator 
of diagnostic performance.   
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2.4 Data analysis 
 
Descriptive statistics (proportion for categorical variables) for all independent variables were obtained. A 
chi-square test was performed to investigate the relationship between the outcome variable (infant mortality) 
and the independent variables. The dataset was further partitioned into training and testing samples where 
70% of the dataset was attributed to training set and the remaining 30% to the testing set [33]. Thereafter the 
multivariate logistic regression was conducted on the training set using the forward selection method of 
model building. The significant variables from the chi-square test were added to the model based on the 
magnitude of their χ2-statistic. The Hosmer Lemeshow goodness-of-fit test was performed to determine the 
adequacy of the logistic regression model.  
 
The artificial neural network model was also built on the training sample. The sigmoid activation function 
with a cross entropy error function was utilised. Both models were validated using the testing dataset. The 
variable importance analysis from the artificial neural network illustrated the contribution of each predictor 
on infant mortality. The results from the logistic and the ANN models were compared in terms of predictive 
and discriminative ability using the Akaike Information Criterion, Sensitivity, Specificity and the Area 
Under the curve (AUC).  
 
The data was cleaned and weighted using SPSS version 20 and was then exported to the R statistical 
software which was used to fit the logistic regression and the ANN models. The neuralnet package was 
installed on the R software to help in building the neural network model on the training set. 
 

3 Results  
 
3.1 Background characteristics of infants  
 
Two-third of the infants (67.1%) were from the rural areas and a large proportion (73.5%) was born to 
mothers between the ages of 20 to 35 years. The mean maternal age at birth was 27.5 years (SD=6.9years) 
with almost half (46.9%) having no formal education. Islam was the religion practised by most (58.6%) of 
the mothers and a higher proportion (95.3%) of the mothers were currently married. 
 
Only 8.8% of the mothers did not desire their pregnancy when they became pregnant. Three-quarters of the 
mothers did not receive tetanus toxoid injection during their pregnancy and 79.0% of mothers never attended 
antenatal care. Only one–third (36.6%) of the mothers gave birth in a health facility while others gave birth 
at home (62.4%) or places other than a health facility. Majority (86.5%) of the mothers received no 
assistance from any health professional or community health worker at time of delivery.  
 
Very few (2.1%) of the infants were delivered by caesarean section compared to normal delivery (96.9%).  
About 4 out of 10 (43.2%) of the live-births were of large size at birth and only 14.3% were small in size at 
the time of birth. 
 

Table 1. Percentage distribution of infants according to selected background characteristics 
 

Background characteristics %(n=31482) 
Region  
North Central 14.7 
North East 20.7 
North West 31.5 
South East 8.9 
South South 11.9 
South West 12.3 
Residence  
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Background characteristics %(n=31482) 
Rural 67.1 
Urban 32.9 
Religion  
Christianity 40.2 
Islam 58.3 
Traditionalists and others 1.0 
Maternal education  
No education 46.9 
Primary education 20.4 
Secondary or Higher 32.7 
Maternal age  
< 20 12.2 
20-35 73.5 
>35 14.3 
Marital status  
Currently or formerly in a union 95.3 
Never in a union 4.7 
Sex of child  
Male 49.3 
Female 50.7 
Size at birth  
Small 14.6 
Average 40.3 
Large 43.2 
Place of delivery  
Home 62.4 
Health facility 36.6 
Delivered by caesarean section  
Yes 96.9 
No 2.1 
No delivery assistance  
Yes 86.5 
No 12.1 
Birth order  
1 19.4 
2 or 3 32.0 
>3  48.6 
Preceding birth interval  
First births 19.6 
≤ 24months 21.2 
>24 months 59.2 
Unwanted pregnancy  
Yes 90.1 
No 8.8 
No antenatal attendance  
Yes 79.0 
No 21.0 
Did not receive tetanus toxoid injection  
Yes 75.2 
No 24.8 
Wealth index  
Poor 45.9 
Middle 19.9 
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Background characteristics %(n=31482) 
Rich 34.1 
Source of water  
Improved 57.9 
Unimproved 42.1 
Type of toilet facility  
Improved 48.2 
Unimproved 51.8 
Electricity  
Yes 53.7 
No 46.3 

 
3.2 Factors affecting infant mortality 
 
3.2.1 Multivariate logistic regression model 
 
A multivariate logistic regression analysis was conducted to determine the factors affecting infant mortality.  
The model fit was tested with Hosmer Lemeshow-statistic=2.654 (P=0.954). A male infant had about 26% 
(OR= 1.26; 95% CI: 1.13, 1.41) increased risk of experiencing infant mortality compared to a female infant.  
Infants born to mothers with no formal education were 32% (OR= 1.32; 95% CI: 1.07, 1.62) at higher risk of 
experiencing infant mortality than those whose mothers had a secondary or tertiary education. Similarly, 
mothers with primary education were 28% (OR= 1.28; 95% CI: 1.06, 1.53) at higher risk of losing their 
babies than mothers who had a secondary or tertiary education.   
 
There was approximately 29% (OR=1.29; 95% CI: 1.06, 1.56) higher risk in infant mortality among infants 
born to mothers who were less than 20 years of age compared to mothers that were between the ages of 20 
and 35 years.  Similarly, about 23% (OR=1.23; 95% CI: 1.04, 1.45) increased risk in infant mortality was 
experienced by infants whose mothers were above 35 years of age compared to those with mothers between 
the ages of 20 and 35 years.  Infants from the rural areas were more likely to experience infant mortality than 
those from the urban areas (OR=1.27; 95% CI: 1.07, 1.50).   
 
Infants with small size at birth were (OR=1.93; 95% CI: 1.65, 2.25) more likely to die at infancy compared 
to babies with large birth size. Likewise, those with average size were (OR=1.21; 95% CI: 1.06, 1.38) more 
likely to experience infant mortality compared to large size babies. Mothers that did not receive tetanus 
toxoid injection during pregnancy had an 11% (OR=1.11; 95% CI: 0.97, 1.26) increase in risk of losing their 
babies compared with the mothers that received tetanus toxoid injection during their pregnancy (Table 2).  
 

Table 2.  Multivariate logistic regression analysis of factors affecting infant mortality 
 

Explanatory variables OR 95% CI p-value 
Lower bound Upper bound 

Region     
North Central 0.87 0.675 1.11 0.519 
North East 1.02 0.795 1.32 0.917 
North West 1.22 0.940 1.59 0.032 
South East 1.12 0.859 1.46 0.037 
South 0.74 0.562 0.97 0.022 
South West®     
Residence     
Rural 1.27 1.074 1.50 0.001 
Urban®     
Religion     
Islam®     
Christianity 1.19 0.987 1.44 0.068 
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Explanatory variables OR 95% CI p-value 
Lower bound Upper bound 

Traditionalists and others 1.25 0.720 2.02 0.994 
Maternal education     
No education 1.32 1.072 1.62 0.002 
Primary education 1.28 1.063 1.53 0.003 
Secondary or Higher®     
Maternal age     
< 20 1.29 1.059 1.56 0.001 
20-35®     
>35 1.23 1.042 1.45 0.031 
Marital status     
Currently in a union®     
Formerly or never in a union 1.40 1.087 1.78 0.001 
Sex of child     
Male 1.26 1.125 1.41 < 0.001 
Female®     
Size at birth     
Small 1.93 1.652 2.25 < 0.001 
Average 1.21 1.062 1.38 0.003 
Large®     
Place of delivery     
Home 1.06 0.903 1.24 0.189 
Health facility®     
Delivered by caesarean section     
Yes 1.56 1.063 2.21 0.002 
No®     
No delivery assistance     
Yes 0.91 0.759 1.09 0.362 
No®     
Preceding birth interval     
First births 1.25 1.012 1.37 0.034 
≤ 24months 1.16 1.040 1.34 0.003 
>24 months®     
No antenatal attendance     
Yes 0.59 0.498 0.68 <0.001 
No®     
No tetanus toxoid injection received     
Yes 1.11 0.969 1.26 0.353 
No®     
Wealth index     
Poor 1.12 0.883 1.41 0.310 
Middle 1.04 0.852 1.28 0.546 
Rich®     
Source of water     
Improved®     
Unimproved 1.01 0.89 1.15 0.641 
Type of toilet facility     
Improved®     
Unimproved 1.08 0.95 1.23 0.068 
No electricity     
Yes 1.06 0.91 1.25 0.540 
No®     

® Reference category 
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3.2.2 Variable importance analysis 
 
The result of the ANN showed that the preceding birth interval of an infant had the largest contribution to 
whether the infant will experience infant mortality or not. The type of toilet facility in the household was the 
predictor with the lowest contribution to infant mortality relative to all other factors. The size of the child at 
birth also contributed to the probability of an infant dying at the stage of infancy. Fig. 1 shows the factors 
according to their contribution to infant mortality. 
 
The logistic regression model and the artificial neural network model were compared using the ROC curve 
by examining the area under the curve. The area under the curve was 0.646 and 0.637 for the logistic 
regression model and the artificial neural network respectively. Fig. 2 shows the ROC curve from both 
models. Table 3 shows the performance of ANN and LR in predicting infant mortality. The sensitivity of the 
classification model was 67% and 76% for the logistic regression model and the artificial neural network 
respectively. Specificity of the prediction was 94% for both the logistic regression and the artificial neural 
network model. The AIC values were 9462 and 9614 for the neural network model and the logistic 
regression model respectively. 
 

 
 

Fig. 1. Percentage contribution of each factor to infant mortality 
 

 
 

Fig. 2. ROC curve from logistic regression model (left) and neural network model (right) 
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Table 3. Comparison of ANN and LR models 
 

Performance indices ANN LR 
Accuracy 83% 81% 
Specificity  94% 94% 
Sensitivity 76% 67% 
AIC 9462 9614 
AUC 0.637 0.622 

 
3.3 Topology of the artificial neural network model 
 
The ANN applied was a feed-forward back propagation; multi-layer perceptron (MLP) neural network with 
three layers which includes the input, the hidden and the output layers. The neural network model was 
trained using 1, 10, 20, 22 and 24 neurons in the hidden layer. The error of the network models were 4772, 
4270, 4008, 3989 and 3989 for 1, 10, 20, 22 and 24 hidden neurons respectively (Table 4). The error reduced 
up to the model with 22 hidden neurons and there was no effect of adding more neurons on the error. 
 

Table 4.  Error across number of hidden neurons 
 
Number of hidden neurons in the model Error 
1 4772 
10 4270 
20 4008 
22 3989 
24 3989 

 

4 Discussion 
 
The discriminative ability of a classification model can be assessed using the sensitivity and the specificity 
of the prediction. In this study, the results of logistic regression model were compared with those of ANN 
model in the prediction of infant mortality through ROC curve. Research findings revealed that ANN model 
had better predictive ability than that of logistic regression model. Moreover, ANN model possessed a higher 
sensitivity than the logistic regression. Many studies have been conducted on the application of ANN for 
analysing data, and most of them have evaluated the results of the model to be favourable [4,5]. 
 
The Artificial neural network also had a higher overall accuracy than the logistic regression model. The 
overall accuracy was measured as percentage of correct predictions out of total predictions. This higher 
accuracy is in line with what was discovered in other studies conducted on the comparison of artificial neural 
network and logistic regression models [6,34]. In fact, neural networks are mostly condemned as ‘black-
boxes’ that gives little or no perception about the causative relationships among variables. Olden and 
Jackson [35] have addressed this criticism and several approaches have since been developed to ‘illuminate 
the black-box’. Though, the ANN does not give the odds ratio of predictors but it was able to illustrate the 
contribution of each factor to the risk of infant mortality from the variable importance analysis.  
 
The variance importance analysis was developed by Olden and Jackson [35] to show the magnitude of 
contribution of each predictor on the outcome. This analysis was able to detect that preceding birth interval 
of less than 24 months has the largest contribution to infant mortality. Previous studies have also shown that 
birth interval greater than 24 months reduces the risk of infant mortality [36-39]. Furthermore, non-reception 
of tetanus toxoid injection by mothers’ during pregnancy achieved significance using ANN but not with LR. 
However, previous studies using Cox regression did not also identify non-reception of tetanus toxoid has a 
significant factor [29]. 
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ANN had a lower Akaike Information Criterion indicating that ANN model fits the data more than the LR 
model. This lower AIC can be associated with the hidden layer present in the artificial network model as 
reported by Rojas [33]; that a neural network model without an hidden layer is similar to the logistic 
regression model. The model with 22 hidden neurons was suitable enough to minimize the error of the 
model. 
 

5 Conclusion 
 
Artificial neural network outperformed the logistic regression in terms of accuracy and discriminative 
ability. Both models (ANN and LR) performed efficiently in their unique way but the artificial neural 
network was able to detect more true positives than the logistic regression model. The ANN minimizes the 
error as the number of neurons in the hidden layer increases.  
 
Less than 24 months gap between an infant and the preceding child and non-reception of tetanus toxoid 
injection by mothers’ during pregnancy were important predictors of infant mortality in Nigeria. 
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