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Introduction: Spinal cord injury (SCI) is a severe central nervous system injury

that leads to significant sensory and motor impairment. Copper, an essential trace

element in the human body, plays a vital role in various biological functions and

is strictly regulated by copper chaperones and transporters. Cuproptosis, a novel

type of metal ion-induced cell death, is distinct from iron deprivation. Copper

deprivation is closely associated with mitochondrial metabolism and mediated by

protein fatty acid acylation.

Methods: In this study, we investigated the effects of cuproptosis-related genes

(CRGs) on disease progression and the immune microenvironment in acute spinal

cord injury (ASCI) patients. We obtained the gene expression profiles of peripheral

blood leukocytes from ASCI patients using the Gene Expression Omnibus (GEO)

database. We performed differential gene analysis, constructed protein-protein

interaction networks, conducted weighted gene co-expression network analysis

(WGCNA), and built a risk model.

Results: Our analysis revealed that dihydrolipoamide dehydrogenase (DLD), a

regulator of copper toxicity, was significantly associated with ASCI, and DLD

expression was significantly upregulated after ASCI. Furthermore, gene ontology

(GO) enrichment analysis and gene set variation analysis (GSVA) showed abnormal

activation of metabolism-related processes. Immune infiltration analysis indicated

a significant decrease in T cell numbers in ASCI patients, while M2 macrophage

numbers were significantly increased and positively correlated with DLD

expression.

Discussion: In summary, our study demonstrated that DLD affects the ASCI

immune microenvironment by promoting copper toxicity, leading to increased

peripheral M2 macrophage polarization and systemic immunosuppression. Thus,

DLD has potential as a promising biomarker for ASCI, providing a foundation for

future clinical interventions.
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GRAPHICAL ABSTRACT

The graphical abstract is divided into two main sections, upper and lower. The upper section comprises three subsections, from left to right, which
respectively represent the peripheral blood immune microenvironment in non-spinal cord injury, the involved biological processes and genes, and
the peripheral blood immune microenvironment after spinal cord injury. The lower section also contains three subsections, from left to right, which
respectively represent the legend for immune cells, the application of artificial intelligence in the field of spinal cord injury, and the specific trends of
changes in the peripheral blood immune microenvironment after spinal cord injury.

1. Introduction

Spinal cord injury (SCI) is commonly caused by external
trauma and is considered as one of the most serious injuries
in traumatology, requiring advanced experience, practice, and
knowledge to ensure the best outcomes for patients (Fehlings and
Nguyen, 2010; Huang et al., 2020). SCI affects 1.3 million people in
North America alone, and the direct lifetime cost per patient ranges
from $1.1 to $4.6 million (Wilson et al., 2013; Ahuja et al., 2016; J
Spinal Cord Med, 2016). Furthermore, SCI-related disability and
death rates have been increasing in recent years (Byra, 2016; Casper
et al., 2018).

The severity of spinal cord injuries can be divided into two
stages: primary and secondary. Primary-stage injury is defined
as direct mechanical damage to tissue, typically due to shearing,
tearing, acute stretching, or sudden acceleration and deceleration
(Wilkerson and Hayes, 2010; Van Gassen et al., 2015). Secondary
injuries can be categorized as acute (within 48 h), subacute (2–
14 days), intermediate (14 days to 6 months), or chronic (over
6 months) (Badhiwala et al., 2019). Hemorrhage and disruption
of the blood-spinal cord barrier (BSCB) expose the spinal cord
to inflammatory cells, such as neutrophils, macrophages, and
cytokines, accompanied by the release of cytotoxic byproducts
(Kim et al., 2017). Edema progresses during the subacute
phase, causing further vascular damage, calcium dysregulation,
inflammation, and persistent ischemia, which cyclically promote
the cytotoxic microenvironment (Singh et al., 2012; Wang et al.,
2014; Liu et al., 2015; Khan et al., 2018). The intermediate and
chronic phases of SCI are characterized by dynamic vascular
remodeling, alterations in extracellular matrix composition, and
reorganization of local and distal neural circuits (Bradbury and
Burnside, 2019). Additionally, after SCI, peripheral lymphoid
organs (e.g., the spleen) lose sympathetic innervation, resulting
in SCI-induced immune deficiency syndrome (SCI-IDS), which
substantially increases the risk of peripheral infection (Brommer

et al., 2016). Peripheral infections are the leading cause of death in
patients with spinal cord injury (Savic et al., 2017; Kriz et al., 2021).
Moreover, infections and associated hyperthermia can further
impair the function of the central nervous system (CNS) after an
SCI (Carpenter et al., 2020). Unfortunately, no curative treatment
options are available for improving neurological outcomes after SCI
(Burns et al., 2017; Badhiwala et al., 2018).

Unlike treatments for primary injuries, those for traumatic SCI
focus on minimizing secondary injuries (Lee et al., 2018), achieved
through the use of methylprednisolone (MP) and early surgical
decompression (Badhiwala et al., 2018). However, studies have
shown that high-dose MP treatment in the early stages of ASCI does
not result in better sensory recovery (p-value = 0.07), but instead
causes gastrointestinal bleeding (p-value = 0.04) and respiratory
infections (p-value = 0.04) (Liu et al., 2019). Therefore, high doses
of MP should be used with caution as routine treatment for ASCI
in the early stages. As the global population ages, cervical spine
injuries account for an increasing proportion of traumatic spinal
cord injury (Devivo, 2012). Researchers have found that patients
with cervical acute spinal cord injury (ASIA) who undergo early
surgery (within 24 h) show better functional recovery after six
months than those who undergo late surgery (more than 24 h)
(Fehlings et al., 2012). Nevertheless, early surgical intervention
for ASCI may encounter numerous obstacles, including a lack
of operating room availability, transporting patients from injury
sites or other centers, a lack of specialized operating room teams,
and a lack of on-call surgeons (Glennie et al., 2017). This means
a large proportion of patients are likely to miss the optimal
time to undergo surgery, depriving them of timely treatment and
compromising their clinical outcomes. Due to limited sensitivity
and specificity, the application of therapeutic strategies, such as
pharmacotherapy (Kjell et al., 2015), cell therapy (Cofano et al.,
2019), biomaterials (Zuidema et al., 2014), and functional electrical
stimulation (Kapadia et al., 2014; Bonizzato et al., 2018), on a
large clinical scale has been difficult. Recent studies suggest that
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the pathogenesis of SCI is closely related to the characteristics
and dynamics of the infiltrating monocyte-derived macrophages
(MDM) (Milich et al., 2019). As the field of SCI research grows,
bioinformatics research based on next-generation sequencing
attracts increasing attention. Gene expression analysis of three
datasets (GSE92657, GSE93561, and GSE189070) in the GEO
database identified a gene with high auxiliary value in SCI (Tong
et al., 2022). Lai et al. (2013) investigated gene expression in
thoracic intrinsic spinal cord neurons of 12 SCI rat models and 12
healthy control rats, identifying three genes of potential interest for
future research (Lai et al., 2013). SCI-IDS can exacerbate peripheral
infections after SCI, further impairing central nervous system
function and resulting in increased mortality and complications.
Therefore, studying changes in the immune microenvironment
following SCI is necessary to further aid in the diagnosis of SCI and
its adjuvant treatment.

Among essential trace elements, copper (Cu) plays an
important role in growth, metabolism, and regulatory functions
related to oxidative stress. It also potentially contributes to the
pathophysiology of SCI and neural regeneration following injury
(Che et al., 2016; Inesi, 2017; Guengerich, 2018; Timon-Gomez
et al., 2018). Despite its usefulness as a cofactor for enzymes
across the animal kingdom, copper can be toxic, resulting in cell
death even at modest intracellular concentrations (Ge et al., 2022).
The role of metal ions in SCI is diverse and important. A recent
study shows that SCI patients exhibit a significant increase in iron
deposits in their motor cortex, ultimately resulting in ferroptosis
in motor neurons and impaired recovery of motor function (Feng
et al., 2021). In a different study, zinc inhibited neuronal ferroptosis
through the NRF2/HO-1 and GPX4 signaling pathways, exerting
a neuroprotective effect (Ge et al., 2021). Following ferroptosis, a
new metal ionic cell death pathway called cuproptosis has recently
gained attention. It is associated with aggregation of fatty acylated
proteins and proteotoxic stress resulting from excessive copper
accumulation (Tsvetkov et al., 2022). Ten genes are implicated in
the process of cuproptosis: FDX1, DLAT, LIPT1, PDHB, LIAS,
DLD, and PDHA1 are positively regulated, while MTF1, GLS,
and CDKN2A are negatively regulated (Tsvetkov et al., 2022).
Cuproptosis has been shown to play a role in a variety of
diseases. Wilson disease (WD) is associated with cuproptosis and
is characterized by copper accumulation in cells and organs. Thus,
copper chelators may be effective in treating WD (Aggarwal and
Bhatt, 2018). A recent study evaluated the role of cuproptosis in
hepatocellular carcinoma and identified a prognostic long non-
coding (lnc) RNA profile associated with cuproptosis to predict
response to immunotherapy (Zhang et al., 2022). Despite this,
it remains unclear whether cuproptosis can be applicable as a
therapeutic option for patients with spinal cord injuries. Serum
copper levels have been found to be significantly higher in patients
with spinal cord injuries than in healthy subjects (p-value = 0.002)
(Salsabili et al., 2009). Abnormalities in serum copper levels after
SCI could provide new insights into the pathogenesis of SCI.

Dihydrolipoamide dehydrogenase (DLD), a multifunctional
oxidoreductase, is an essential component of multiple
mitochondrial multienzyme complexes, and it is known to induce
cuproptosis (Fan et al., 2014; Tsvetkov et al., 2022). Numerous
studies have highlighted the importance of DLD in cell death. For
example, DLD induced hyperphosphorylation of microtubule-
associated tau protein, which led to neurodegeneration in
Alzheimer’s disease (Ahmad, 2018). Moreover, DLD has been

shown to produce a significant amount of reactive oxygen species
(ROS) in melanoma cells, inducing apoptosis (Dayan et al., 2019).
In addition, DLD is known to promote ferroptosis in head and
neck cancers (Shin et al., 2020). Although cell death is inevitable
during the acute phase of spinal cord injury, it is unknown whether
DLD influences this process.

Our study aimed to evaluate the effects of cuproptosis-
related genes (CRGs) on ASCI progression and the immune
microenvironment using a multi-omics and multi-dimensional
approach, in addition to identifying peripheral blood biomarkers
for acute (A) SCI. Therefore, an exploratory examination of
the relationship between DLD, ASCI disease progression, and
changes in the immune microenvironment was performed
using bioinformatics analysis, including differential expression
analysis, protein–protein interaction (PPI) network analysis,
centrality analysis, weighted gene co-expression network analysis
(WGCNA), risk model construction, deep learning-based clinical
prediction model construction, functional enrichment analysis,
molecular subtype analysis, and immune infiltration analysis.
Our findings suggested that DLD affects the peripheral immune
microenvironment in ASCI and induces M2 polarization of
macrophages, which exacerbates SCI-IDS and adversely impacts
ASCI outcome. Moreover, DLD shows potential as a peripheral
blood biomarker for ASCI. As a result of our analysis, it becomes
clear that CRGs play an important role in ASCI development, as
well as providing a basis for therapeutic applications of cuproptosis
regulators in ASCI.

2. Materials and methods

2.1. Data sources and preprocessing

We downloaded single-array ASCI patients’ RNA-seqencing
(seq) data from the GEO database1 to eliminate the possibility of
multi-array batch effects interfering with our results. The criteria
for gene chip selection were as follows: (1) Complete raw RNA-
sequencing data were available, (2) RNA-sequencing of peripheral
blood leukocytes from patients with spinal cord injuries, (3) Within
48 h after the injury, peripheral blood samples were collected from
the patient, and (4) Complete clinical baseline information was
available for the patients. The selected gene microarray dataset
was GSE151371 (Kyritsis et al., 2021), with Homo sapiens as the
selected species and peripheral blood leukocytes as the selected
tissue type. The dataset included data from 20 control patients
without spinal cord injuries (Control group) and 38 ASCI patients
(ASCI group). Data from microarray experiments were normalized
using the Bioconductor package limma (Phipson et al., 2016).
Clinical data for ASCI patients were obtained from the GSE151371
dataset (Table 1). Missing values and outlier samples were removed
before training neural networks.

2.2. Expression profiling of CRGs

To determine the expression of CRGs in ASCI, we identified
the chromosomal locations using the R software package RCircos

1 https://www.ncbi.nlm.nih.gov/geo/
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(Zhang et al., 2013). Next, we analyzed the expression of CRGs in
the ASCI and control groups using the Wilcoxon test and visualized
the results using the ggplot2 (Ito and Murphy, 2013) package. The
differential expression of CRGs was analyzed using the R package
limma and visualized using the ggplot2 package. Since small
changes in the nervous system can have a substantial impact, we
set a cutoff at a p-value of <0.05 to ensure the comprehensiveness
of the differential expression analysis.

Next, to analyze the correlation and interaction between
positive (FDX1, DLAT, LIPT1, PDHB, LIAS, DLD, and PDHA1)
and negative (MTF1, GLS, and CDKN2A) cuproptosis regulators,
we performed Spearman correlation analysis on CRGs and
visualized the results using the R package ggcorrplot.

2.3. Risk model and clinical prediction
model construction

We first identified key genes associated with ASCI using
univariate logistic regression analysis, and then used the least
absolute shrinkage and selection operator (LASSO) algorithm to
confirm the correlation between key genes and ASCI. Furthermore,
a variance inflation factor cutoff of four was used to exclude
multicollinearity in multivariate logistic regression analysis of
ASCI. To validate the results of the multivariate logistic regression
and assist in the diagnosis of ASCI, we developed a nomogram
prediction model based on these results. A calibration curve was
used to evaluate the performance of the nomogram model in
identifying patients with ASCI.

After considering the ASIA score as the dependent variable,
we incorporated the ASCI-related potential biomarker (DLD) and
eight clinical features into the model. The clinical features included
sex, age, race, prior central nervous system pathology, injury severe
score, concurrent traumatic brain injury, blood draw time, and
damaged spinal cord stage. We used the R package keras to model
the classifier architecture using neural networks. The ASIA scores
were compressed according to grades with the A, B, and C levels
designated as level 2, whereas the D and E levels were designated
as level 1. This neural network consisted of two layers, in which
the input layer activation function was “relu” and the output
layer activation function was “sigmoid,” combined with a rmsprop
optimizer and a custom penalty function. The ASCI patients were
randomly assigned to training and validation sets in a 3:7 ratio.
To measure the performance of the clinical prediction model,
receiver operating characteristic (ROC) curves were calculated by
comparing predicted and observed values from the neural network.

2.4. CRGs functional enrichment analysis
and gene set variation analysis

CRG annotation using GO and KEGG pathway enrichment
analysis was performed using the clusterProfiler package (Yu et al.,
2012) in R. Statistical significance was determined using a false
discovery rate of 0.05.

To determine whether there were differences between different
groups regarding biological processes, we performed gene set
variation analysis (GSVA) using the gene expression profiling
dataset of ASCI patients. Gene set enrichment analysis (GSEA)

TABLE 1 Baseline information.

Characteristic Levels Overall

n 58

Group, n (%) SCI 38 (65.5%)

Control 20 (34.5%)

Sex, n (%) F 19 (32.8%)

M 39 (67.2%)

Race, n (%) Asian 4 (6.9%)

Black or African-American 5 (8.6%)

Hispanic 25 (43.1%)

Other 3 (5.2%)

Unknown 16 (27.6%)

White 5 (8.6%)

Prior CNS pathology, n (%) No 41 (70.7%)

Yes 12 (20.7%)

Unknown 5 (8.6%)

Concurrent TBI, n (%) No 48 (82.8%)

Yes 8 (13.8%)

Unknown 2 (3.4%)

NLI grouped, n (%) Cervical 18 (47.4%)

Lumbar 2 (5.3%)

Thoracic 10 (26.3%)

Unknown 8 (21.1%)

ASIA impairment scale, n (%) A 12 (31.6%)

B 4 (10.5%)

C 6 (15.8%)

D 11 (28.9%)

Unknown 5 (13.2%)

Age, median (IQR) 51 (39, 66)

ISS, median (IQR) 21 (17, 32.5)

Blood draw time, median (IQR) 22.5 (17, 40)

evaluates whether two biological states are significantly different
from each other by comparing a gene set (Subramanian et al.,
2005). GSVA is a sub-algorithm of GSEA that estimates changes
in pathway and biological process activity in samples of expression
datasets. Using the annotation catalog (msigdb.v7.4.symbols.gmt)
from the MSigDB database (Liberzon et al., 2015), we performed
GSVA using the R package GSVA (Hanzelmann et al., 2013),
and employed linear fitting and Bayesian network algorithms to
determine the differences between the ASCI and control groups in
the relevant GSVA pathways. A p-value threshold of 0.05 was used
to determine statistical significance.

2.5. Weighted gene co-expression
network analysis (WGCNA)

Using the R package WGCNA (Langfelder and Horvath,
2008), we performed a WGCNA analysis of the eigengene set
in ASCI. First, to eliminate outliers from the standardized gene
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FIGURE 1

Analysis flow chart. The study flow chart is divided into two main sections according to the study sequence. Each icon represents schematically an
analysis or a collection of data to be analyzed.

expression data, we performed hierarchical clustering. In the
next step, we adopted the R2 and slope values to determine
the optimal soft threshold, as well as to validate the scale-free
network. A dissimilarity analysis, with a threshold of 0.25, was
used to determine the adjacency matrix and topology matrix, and
dynamic shear trees were analyzed to identify network modules
(deepSplit = 2, miniClusterSize = 30). Finally, we performed the
correlation analysis in conjunction with the ASCI phenotype data.

2.6. Construction of protein–protein
interaction (PPI) network

The PPI network of CRGs was constructed using the STRING
database, and the sub-networks were extracted using the MCODE
plugin of Cytoscape software (version: 3.9.1) (Shannon et al., 2003).

Next, we examined the centrality of the PPI network of CRGs
in four dimensions including betweenness centrality, closeness
centrality, degree centrality, and stress centrality. Moreover, we
analyzed the co-expression of ASCI-related WGCNA module
genes, differentially expressed CRGs, PPI sub-network genes of
CRGs, and the results of multivariate logistic regression.

2.7. Identification and correlation analysis
of immune infiltration in ASCI

The extent of immune cell infiltration in the control and
ASCI groups was calculated using the single-sample Gene Set
Enrichment Analysis (ssGSEA) algorithm. According to gene
expression data, ssGSEA can be used to determine the population
of immune cells within a sample (Subramanian et al., 2005).
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FIGURE 2

Overall expression of cuproptosis-related genes (CRGs) in acute spinal cord injury (ASCI) patients. (A) Differences in the expression of CRGs between
the ASCI and control groups; ns indicates p-value = 0.05, * indicates p-value < 0.05, and ** indicates p-value < 0.01. (B) Expression heat map of
CRGs. (C) Chromosome localization map of CRGs. (D) Volcano plot of the results of the differential genetic analysis of CRGs.

CIBERSORT is an analytical tool developed by Newman et al.
to estimate the abundance of different cell types in mixed cell
populations by using gene expression data (Newman et al., 2019).
We validated immune infiltration results using the CIBERSORT
algorithm in R. Statistically significant differences in immune cell
proportions between normal and diseased sample groups were
calculated using the Wilcoxon test, with a p-value of 0.05 being
considered statistically significant. To determine the stability of
the immune infiltration analysis results, based on the R package
immunedeconv and ImmuCellAI, we also used different algorithms
for validation, including: quanTIseq, Xcell, MCP-counter, and
ImmuCellAI (Sturm et al., 2019; Miao et al., 2020).

Our analysis of ASCI key genes and immune characteristics was
conducted using the R package corrr to quantify the correlation
between ASCI key genes and immune characteristics. Based on
the ASIA score, we divided the ASCI patients into two groups:
the ASIA-high group, which included levels A, B, and C, and
the ASIA-low group, which included levels D and E. Next, we

further explored the effect of an altered immune microenvironment
on ASCI disease progression through differential expression and
correlation analysis.

2.8. Construction of the ASCI-related
molecular subtype

To analyze the potential subtypes among the CRGs of ASCI
patients, we first organized the expression matrix of CRGs, then
compressed the data distribution using normalization, and finally
performed consensus clustering analysis using the hclust algorithm
(sample resampling ratio: 80%, number of resamplings: 1,000,
maximum number of clusters: 7). The R package pheatmap was
used to visualize molecular typing results. To evaluate ASCI
molecular typing, we used the T-distributed Stochastic Neighbor
Embedding (tSNE) algorithm. According to the results of the
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FIGURE 3

Correlation of cuproptosis-related genes (CRGs) in acute spinal cord injury (ASCI) patients. (A–C) Correlation histogram plot of CRGs; the abscissa
represents positive cuproptosis regulators, and the ordinate represents negative cuproptosis regulators; Colour code indicates correlation.
(D) Correlation heat map of CRGs; numbers represent correlation coefficients. (E) Correlation network diagram of CRGs; numbers represent
correlation coefficients.

analysis of ASCI-related molecular subtypes, Spearman’s coefficient
was used to determine the relationships between key genes and
ASCI-related molecular subtypes.

2.9. qRT-PCR and ELISA experiment

White cells were extracted from peripheral blood through
Peripheral Blood Leukocyte Isolation Kit (TBD, WBC1077K),
strictly following the manufacturer’s instructions. We collected
peripheral blood (5 ml) from patients in the ASCI group (n = 3)
and control group (n = 3) using anticoagulant tubes. Carefully suck
the blood sample with a straw and add it to the liquid level of the
separation solution (5 ml), then centrifuge (500–800 g, 30 min).
After centrifugation, carefully aspirate all circular milky white cell
layers (one or two layers) using a pipette, add them to 10 ml of
cleaning solution, and mix the cells evenly. Then centrifuge at
low speed (250 g, 10 min). Repeat washing 2–3 times to obtain

the required white blood cells. qRT-PCR and ELISA experimental
processes are similar to our previous studies (Wu et al., 2022).
The primers in qRT-PCR are LDHD-F sequence (5’–3’ agc ctg agc
acc gtg tta cc), LDHD-R Sequence (5’–3’ gcc agg aca gga tgc gta
gg), which purchased from Sangon Biotech (Shanghai, 007177).
The Human DLD ELISA Kit was purchased from ZCi Biotech
(Shanghai, ZC-56138). Measure the absorbance (OD value) using
an enzyme-linked immunosorbent assay at a wavelength of 450 nm.
Both qRT-PCR and ELISA experiments were repeated three times.

2.10. Statistical analysis

Data processing and analysis were conducted using the R
software (version 4.2.0). When comparing two continuous variable
groups, an independent Student’s t-test was used to estimate
the statistical significance of normally distributed variables, and
Mann–Whitney U tests were used to examine differences between

Frontiers in Cellular Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fncel.2023.1132015
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-17-1132015 May 2, 2023 Time: 14:12 # 8

Li et al. 10.3389/fncel.2023.1132015

FIGURE 4

Construction of risk models for acute spinal cord injury (ASCI). (A) Nomogram prediction model for ASCI. (B) Forest plot base on logistic regression.
(C) Calibration curves for the Nomogram prediction model. (D,E) LASSO regression recognized essential genes of ASCI.

non-normally distributed variables. Statistical significance of the
two categorical variable groups was determined using the chi-
square or Fisher’s exact test. Spearman correlation analysis was
used to measure the correlation coefficients of different genes. The
statistical p-values were two-tailed, and statistical significance was
set at p < 0.05.

3. Results

3.1. Gene chip quality control

The flow chart for this study can be found in Figure 1.
We analyzed the expression levels in ASCI and control

groups from the GEO dataset using background calibration

to evaluate how ASCI patients express CRGs overall
(Supplementary Figure 1).

3.2. Expression profile of CRGs in ASCI

CRG expression distribution and chromosomal localization
were analyzed to determine the overall expression of CRGs in
ASCI patients (Figures 2B, C). Next, we determined whether the
expression of CRGs in the ASCI group differed from that in the
control group using the Wilcoxon test. The results demonstrated
that MTF1, LIPT1, GLS, LIAS, and CDKN2A were significantly
differentially expressed (Figure 2A). Subsequently, we performed
differential gene expression analysis for CRGs in ASCI patients. We
found that DLD and MTF1 were significantly upregulated in ASCI
patients, whereas GLS, LIAS, LIPT1, and FDX1 were significantly
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FIGURE 5

Predictive power analysis of neural network model for acute spinal cord injury (ASCI). (A) Architecture diagram of neural network model.
(B) Calibration curve for the neural network model in the training set; the abscissa represents patients, and the ordinate represents the levels of ASIA.
(C) Calibration curve for the neural network model in the validation set; the abscissa represents patients and ordinate represents the levels of ASIA.
(D) Receiver operating characteristic (ROC) curve of the training set of the neural network model; the abscissa represents the specificity and
ordinate represents the sensitivity. (E) ROC curve of the validation set of the neural network model; the abscissa represents the specificity and
ordinate represents the sensitivity.

downregulated in ASCI patients (p-value < 0.05) (Figure 2D).
To ensure the comprehensiveness of the study, we combined
the results from Wilcoxon’s test and differential gene expression
analysis.

Next, we analyzed the correlation and interaction between
positive and negative regulators within CRGs using the Spearman
algorithm (Figure 3E). There was a positive correlation between
DLD and MTF1, and a negative correlation between DLD, GLS,
and CDKN2A (Figures 3A–C). Genes with a correlation coefficient
greater than 0.7 were considered significantly correlated, and a
significant negative correlation was observed between DLD and
CDKN2A (Figure 3D).

3.3. Construction of risk models

To analyze the expression of CRGs in ASCI, we first performed
a univariate logistic regression analysis to identify key genes
associated with ASCI. We employed the LASSO algorithm to

narrow down the analysis and validate the key genes associated
with ASCI (Figures 4B, D, E). In a multivariate logistic regression
model, ASCI-related eigengenes were incorporated, and GLS,
LIAS, and DLD were identified as independent risk factors for
ASCI (p-value < 0.05) (Figure 4B). Based on the multivariate
logistic regression results, a predictive nomogram was constructed
to predict the risk of ASCI (Figure 4A). The calibration curve
demonstrated that the nomogram prediction model, based on the
independent risk factors of ASCI, could identify patients with ASCI
with excellent accuracy (Figure 4C).

3.4. Construction of clinical prediction
models

To aid clinical diagnosis and treatment, we integrated DLD
expression levels and clinical characteristics into our model,
constructing an architecture of back-propagation neural networks
with classifiers (Figure 5A). Based on the calibration curve, the
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TABLE 2 Function enrichment analysis.

Category ID Description p-value

BP GO:0006086 Acetyl-CoA biosynthetic process from pyruvate 9.66E-13

BP GO:0006085 Acetyl-CoA biosynthetic process 8.96E-12

BP GO:0006084 Acetyl-CoA metabolic process 1.53E-10

BP GO:0044272 Sulfur compound biosynthetic process 1.72E-10

BP GO:0035384 Thioester biosynthetic process 4.35E-10

MP GO:0016620 Oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor 2.08E-10

MP GO:0016903 Oxidoreductase activity, acting on the aldehyde or oxo group of donors 4.28E-10

MP GO:0016747 Acyltransferase activity, transferring groups other than amino-acyl groups 2.11E-03

MP GO:0016746 Acyltransferase activity 2.67E-03

MP GO:0016783 Sulfurtransferase activity 3.26E-03

CC GO:0005759 Mitochondrial matrix 2.12E-10

CC GO:1990204 Oxidoreductase complex 1.52E-08

CC GO:0098798 Mitochondrial protein-containing complex 2.71E-03

CC GO:0045239 Tricarboxylic acid cycle enzyme complex 3.98E-03

CC GO:0001669 Acrosomal vesicle 3.66E-02

KEGG hsa00020 Citrate cycle (TCA cycle) 2.23E-09

KEGG hsa00620 Pyruvate metabolism 1.45E-08

KEGG hsa00010 Glycolysis/Gluconeogenesis 6.20E-08

KEGG hsa01200 Carbon metabolism 5.54E-07

KEGG hsa01240 Biosynthesis of cofactors 1.25E-04

model demonstrated excellent classification performance in both
training and validation datasets (Figures 5B, C). A comparison
between predicted and actual ASCI values was conducted to
evaluate the performance of the neural network, resulting in
ROC curves with area under the curve (AUC) of 0.8 and 0.757
in the training set and validation set, respectively (Figures 5D,
E). These results confirm the outstanding ability of the neural
network clinical prediction model to predict neurological function
in ASCI patients. Moreover, by using the custom penalty
function, we enhanced the goodness of fit of the neural network
model for small datasets, thereby preventing the occurrence of
overfitting.

3.5. Functional enrichment analysis

Comparing ASCI and control patients, we analyzed the
effects of CRGs on biologically relevant functions (Table 2).
The GO functional annotation results of CRGs revealed that
biological processes were dominated by differentially expressed
genes, such as the biosynthesis of acetyl-CoA from pyruvate,
acetyl-CoA metabolic process, and acetyl-CoA biosynthetic
process (Figure 6A); molecular functions such as antioxidant
activity, acting on the aldehyde or oxo group of donors,
NAD or NADP as acceptor, acyltransferase activity, and
sulfurtransferase activity (Figure 6B); and cellular components
such as mitochondria matrix, oxidoreductase complex, and
mitochondrial protein-containing complex (Figure 6C). The
first eight enrichment results of the GO biological process
examined the regulation of CRGs (Figures 6D, E). The next

step was to conduct an interactive study of enrichment of
CRGs in KEGG pathways, and the results indicated that these
CRGs were enriched in pathways such as the citrate cycle (TCA
cycle), pyruvate metabolism, and glycolysis/gluconeogenesis
(Figure 6F).

We performed GSVA analysis with CRGs to verify the accuracy
of GO and KEGG enrichment analyses. Biological processes
were found to differ significantly from one another: biosynthetic
process, metabolic process, and oxidation process were significantly
upregulated after ASCI (Figure 6G). Based on these findings, CRGs
may play a role in metabolic processes associated with SCI.

3.6. Weighted gene co-expression
network analysis (WGCNA)

To analyze the eigengene set of ASCI, we performed a WGCNA
using all genes from the GSE151371 chip. First, we performed
a hierarchical clustering analysis on the samples; then, outlier
samples were removed, and a dynamic clipping tree was used to
identify the network modules (Figure 7D). The scale-free network
was verified upon selecting the best soft threshold. The results
showed that R = 0.87 and slope = −1.97, and the scale-free
network had been successfully established (Figures 7A–C). After
excluding the gray module, we performed a correlation analysis
using the scale-free network module and the external module
(ASCI), revealing a significant relationship between the ivory, blue,
darkgray, saddlebrown, brown, darkred, green, and black modules
and ASCI (p-value < 0.05) (Figure 7E).
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FIGURE 6

Functional enrichment analysis of cuproptosis-related genes (CRGs). (A–C) Bubble diagram of the first 10 biological processes, molecular functions,
and cellular components items, with horizontal coordinates indicating GeneRatio, vertical coordinates indicating gene ontology (GO) terms, dot size
indicating the number of genes, and dot color indicating adjust p-value. (D) Circle diagram of the first eight biological processes items, with the
outer circle dot color representing upregulated and downregulated genes and the inner circle color representing activation or repression of GO
terms. (E) String diagram of the first eight biological processes, the left outer half-circle represents genes within the pathways, the color indicates
log fold change (FC), the right outer half-circle color indicates GO terms, and the inner connecting line indicates the association of GO terms with
genes. (F) Interaction network diagram of the Kyoto encyclopedia of genes and genomes (KEGG) pathways. (G) Volcano plot of differential
expression of gene set variation analysis (GSVA); colors represent different biological process.

3.7. PPI network of CRGs between ASCI
and control groups

We explored differences in PPI networks by extracting protein
interaction networks of CRGs from ASCI and control groups.

The PPI network of CRGs was constructed using the STRING
database, containing 17 interaction relationships and ten CRGs,
with a confidence index of 0.7, an average local clustering coefficient
of 0.733, and an enrichment p-value of 1.11e-16 (Figure 8B).
Next, we used the Cytoscape software to extract the functional
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FIGURE 7

Weighted gene co-expression network analysis (WGCNA). (A,B) Scale-free network verification graph (R2 > 0.8, slope < 0), conforming to the
scale-free network standard. (C) TOM network clustering heatmap. (D) Dynamic clipping tree clustering diagram; the abscissa is the clustering
module and ordinate is the tree height. (E) Heat map of correlations between WGCNA network modules and acute spinal cord injury (ASCI).

interaction subnets of the PPI network (Figure 8C). We also
analyzed the centrality of PPI network nodes in four dimensions:
betweenness centrality, closeness centrality, degree centrality, and
stress centrality. The results indicated that DLD and LIAS occupy
critical positions within the PPI network (Figure 8A). After
conducting co-expression analyses of all CRGs, ASCI-related
WGCNA modules, differentially expressed CRGs, and multivariate
logistic regression, we found that DLD was not only highly
correlated with ASCI but also exhibited significant changes in
expression levels after ASCI (Figure 8D). Thus, cuproptosis
regulator DLD may play an important role in ASCI, which was the
focus of our next analysis.

3.8. Immune infiltration and correlation
in ASCI and control groups

ASCI patients were assessed using the CIBERSORT algorithm
for their immune profile and level of immune cell infiltration
(Figure 9A). To further elucidate changes in the immune
microenvironment of ASCI patients, we estimated the extent
of immune cell infiltration using ssGSEA (Figure 9B). After
ASCI, the number of activated B cells and activated CD8 T
cells significantly decreased, while the number of macrophages
significantly increased (p-value < 0.05). To evaluate the stability
of the immune infiltration analysis, we used several immune

infiltration algorithms for validation and obtained similar
conclusions (Supplementary Figures 2A–D).

To determine whether CRGs play a role in the altered immune
environment after ASCI, we analyzed the correlation between
DLD and differentially expressed T cells, B cells, plasma cells, and
macrophages. Correlations were considered significant when the
p-value was less than 0.05. The results indicated that DLD and
CD8 T cells were significantly negatively correlated (R = −0.44,
p = 5.6e-04) (Figure 10C), DLD and CD4 naive T cells were
significantly negatively correlated (R = −0.39, p = 2.8e-0.3)
(Figure 10D), and DLD and M2 macrophages were significantly
positively correlated (R = 0.35, p = 7.9e-03) (Figure 10G). There
was no significant correlation between DLD and the remaining
immune infiltrating cell population (p-value > 0.05) (Figures 10A,
B, E, F). A significant positive correlation was also found between
DLD and ASIA grades (R = 0.37, p = 0.038) (Figure 10H).
We analyzed M2 macrophage levels in ASCI-high and ASCI-
low patients to understand the role of immune cell abnormalities
in ASCI disease progression. The results showed that the ASIA-
high group had a significantly higher content of macrophage
M2 (p-value < 0.05) (Supplementary Figure 2F). Moreover, M2
macrophage numbers and ASIA levels showed a significant positive
correlation (R = 0.12, p = 0.046) (Supplementary Figure 2E). This
suggests that peripheral blood macrophages M2 play an important
role in the ASCI process.
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FIGURE 8

Protein–protein interaction (PPI) network of cuproptosis-related genes (CRGs). (A) Analysis of degree centrality, betweenness centrality, closeness
centrality and stress centrality in PPI network. (B) PPI network of the CRGs; the width and colors of edges indicate the credibility of the evidence. (C)
Network diagram of hub genes. (D) Venn diagram of hub genes, differential expression CRGs, acute spinal cord injury (ASCI)-related weighted gene
co-expression network analysis (WGCNA) modules, and results of the multivariate logistic regression.

3.9. Construction and correlation
analysis of relevant molecular subtypes
of ASCI

We then constructed ASCI subtypes based on their molecular
characteristics. Based on the cumulative distribution function
(CDF), it was optimal to have two subtypes, named Cluster1 and
Cluster2 (Figures 11A–C). To verify the effect of ASCI molecular
typing, tSNE analysis was performed. The results indicated that
Cluster1 and Cluster2 have excellent resolution (Figure 11D).
Finally, we calculated the association between the ASCI key gene
DLD and the two ASCI molecular subtypes, finding that both
Cluster1 (R = 0.25, p = 0.005) and Cluster2 (R = 0.46, p = 4.1e-07)
were significantly positively correlated with DLD (Figures 11E, F).

3.10. qRT-PCR and ELISA experiment
confirmed the increase expression of
DLD in white cells after ASCI

To verify the expression changes of DLD after ASCI, we
extracted peripheral white blood cells from patients in the

experimental group and control group. qRT-PCR and ELISA
experiment indicated that DLD was significantly increased in
mRNA and protein level in white blood cells after ASCI
(Figures 12A, B). These results suggested that DLD might
be related to immune infiltration in peripheral white blood
cells after ASCI.

4. Discussion

An unintentional spinal cord injury is an extremely serious
condition, with dire consequences for the patient’s health and
a significant financial burden (Wu et al., 2021). ASCI has been
extensively studied, but no effective molecular targeted therapies
have been validated. A new cell death pathway, cuproptosis, has
recently gained increased attention (Tsvetkov et al., 2022). In the
current study, we utilized human peripheral blood leukocyte data
obtained from the GEO database to analyze the effects of CRGs
on the ASCI immune microenvironment at a multi-omics level
and their clinical significance. Using differential gene analysis,
WGCNA, risk model construction, and PPI network centrality
analysis, we identified potential ASCI peripheral blood diagnostic
markers and the potential therapeutic target DLD. We integrated
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FIGURE 9

Acute spinal cord injury (ASCI) immune infiltration analysis. (A) Differential expression of infiltrating immune cells between ASCI and control groups
determined using CIBERSORT immune infiltration analysis. (B) Differential expression of immune infiltrating cells in the ASCI and control groups
based on single-sample gene set enrichment analysis (ssGSEA). ns indicates p-value = 0.05, * indicates p-value < 0.05, ** indicates p-value < 0.01,
*** indicates p-value < 0.001, and **** indicates p-value < 0.0001.

these results with clinical information from ASCI patients to
construct a predictive model for ASCI. Based on our findings,
the enriched biological processes and pathways in ASCI are
closely related to metabolic and oxidative processes. The immune
infiltration results indicated that systemic immune function
was suppressed following ASCI. We constructed two molecular
subtypes of ASCI and elucidated the role of CRGs in both subtypes.
In the ASCI subtypes Cluster1 and Cluster2, the cuproptosis
process, positively regulated by DLD, affected the peripheral
immune microenvironment and induced the polarization of M2
macrophages, further exacerbating systemic immunosuppression
following ASCI and affected the prognosis.

Numerous studies have highlighted the importance of immune
cells in ASCI. For example, a high-segment spinal cord injury
can be treated by targeting the spleen in order to regain immune
homeostasis (Noble et al., 2018). The function of natural killer
(NK) cells is affected following SCI, and thus, NK cells are
considered potential therapeutic targets for SCI (Laginha et al.,
2016). Consequently, in this study, we selected human peripheral
blood leukocyte sequencing data and used only one chip to
eliminate batch effects. Initially, we normalized the GSE151371
microarray data to identify the chromosomal location of CRGs.

Among the six CRGs identified by differential gene analysis,
DLD and MTF1 were significantly upregulated in ASCI patients.
Accordingly, DLD and MTF1 are likely key genes involved in
cuproptosis affecting ASCI. Next, to investigate whether dynamic
regulation of the cuproptosis process occurs after ASCI, we
analyzed the interaction between positive and negative cuproptosis
regulators, and the results indicated that DLD was significantly
negatively correlated with CDKN2A. However, univariate logistic
regression indicated no correlation between CDKN2A and ASCI;
thus, DLD may represent an independent risk factor for ASCI. Due
to its role as a multifunctional oxidoreductase, DLD is involved
in various processes, such as DNA binding, apoptosis mediation,
and reactive oxygen species generation (Fernandez and Bolanos,
2016; Ambrus and dam-Vizi, 2018; Lin et al., 2019). It has been
reported that inhibition of DLD counteracts oxidative stress in
type 2 diabetes (Yang et al., 2019). Furthermore, another study
showed that DLD inhibition reduces ischemic stroke damage
through reduced oxidative stress, reduced cell death, increased Nrf2
signaling, and increased NQO1 activity (Wu et al., 2017a). Our
results reveal similar evidence for the important role played by DLD
in the metabolic and oxidative processes of ASCI.
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FIGURE 10

Correlation analysis of acute spinal cord injury (ASCI) key genes and immune infiltrating cells. (A–G) Scatter plot of the correlation between DLD and
immune infiltrating cells, including B cells memory, Plasma cells, T cells CD8, T cells CD4 naive, T cells CD4 memory resting, macrophage M0, and
macrophage M2; R represents correlation coefficient, and P represents p-value. (H) Scatter plot of the correlation between DLD and ASIA levels; R
represents correlation coefficient, and P represents p-value.

Using the PPI network identified in this study, we discovered
genes that play an important role in ASCI, specifically DLD and
LIAS. Both univariate and multivariate logistic regressions analyses
indicated that DLD, LIAS, and GLS were independent risk factors
for ASCI. Based on the logistic regression results, we constructed
a clinical prediction nomogram model. Using DLD, LIAS, and
GLS expression levels, the model can accurately diagnose ASCI.
A scale-free network using WGCNA was constructed to ensure
the study was as comprehensive and stable as possible. Eight gene
modules associated with ASCI were identified using this network.
Next, we identified potential ASCI biomarkers from four aspects,
including: linear relationships (logistic regression), scale-free
networks (WGCNA), protein interaction relationships (PPI
networks), and differential genes. Across all four latitudes, DLD
showed significant importance. Therefore, DLD was confirmed
to play an important role as an independent risk factor in
the development of ASCI. After combining the clinical data of

ASCI patients with the expression levels of DLD, we built a
back-propagation neural network model that can be used to
predict the neurological function of ASCI patients and assist with
diagnosis and treatment. Using a custom penalty function, we
optimized the fit of a neural network for a small training set,
which not only achieved a higher recall rate, but also prevented
under- or over-fitting. The clinical application value of DLD as
a biomarker in the diagnosis and treatment of ASCI was further
elucidated by the neural network clinical prediction model. In
the enrichment analysis, the metabolism-related pathways such
as pyruvate metabolism and citrate cycle (TCA cycle) were
significantly enriched, suggesting that DLD played a critical role
in the metabolic process of various diseases (Landgraf et al., 2017;
Wu et al., 2017b; Purroy et al., 2020). After ASCI, metabolic and
oxidative processes were active, as indicated by the results of the GO
and GSVA analyses. Metabolism plays a significant role in ASCI,
as dysregulated metabolic pathways are involved in pathological
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FIGURE 11

Relevant molecular subtypes and correlations of acute spinal cord injury (ASCI). (A) Cumulative distribution function (CDF) curve of consensus
clustering of ASCI-related molecules; the abscissa represents the consensus index, and the ordinate represents the CDF index. (B) Relative change in
the area under the CDF curve; the results show that it is divided into two types, and the change in trend is the most stable. (C) Cluster heat map of
ASCI-associated molecular subtypes. (D) T-distributed Stochastic Neighbor Embedding (tSNE) analysis plot of ASCI-related molecular subtypes.
(E) Scatter plot of the correlation between DLD and ASCI-related molecular subtype Cluster1; R represents correlation coefficient, and P represents
p-value. (F) Scatter plot of the correlation between DLD and ASCI-related molecular subtype Cluster2; R represents correlation coefficient, and P
represents p-value.

processes leading to tissue damage and functional impairment
(Lepoutre et al., 2017; Neural Regen Res, 2021). Targeting metabolic
pathways is a promising strategy for ASCI treatment, improving
neuronal survival, promoting axonal regeneration, and reducing
pathological processes (Meesters et al., 2017; Meier et al., 2017).
Enriched metabolic pathways in ASCI include the TCA cycle,

glycolysis, and ketone body metabolism. Their dysregulation leads
to oxidative stress, cell death, and tissue damage, suggesting
therapeutic potential for metabolic interventions (Lepoutre et al.,
2017; Meier et al., 2017). Metabolic reprogramming may serve as
a hallmark of ASCI progression and a potential target for therapy
(Meier et al., 2017). Targeting metabolic pathways may offer new
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FIGURE 12

DLD expression in white cells from peripheral blood. (A) The mRNA (DLD) expression significantly increased in ASCI group in qRT-PCR experiment.
(B) ELISA experiment detected a significant increase in DLD expression of ASCI group. (*p < 0.05).

avenues for treating ASCI. Further research is needed to elucidate
the underlying mechanisms and potential therapeutic benefits of
metabolic interventions.

Compared to the control group, the proportions of mature
B cells and mature CD8 T cells in the ASCI group decreased,
indicating suppressed peripheral immune function. On the other
hand, M2 macrophage levels were elevated in ASCI patients,
indicating altered polarization tendencies among peripheral
macrophages. Macrophage polarization is unstable and may
be affected by various factors (Boutilier and Elsawa, 2021).
The cuproptosis-related gene DLD has been implicated in
immunity by several studies. Pseudomonas aeruginosa virulence
may be influenced by DLD, which is a complement-regulatory
protein-binding protein (Hallstrom et al., 2015). Another study
indicated that DLD was an autoantibody target in patients
with endometrial cancer (Yoneyama et al., 2014). Consequently,
we propose a hypothesis that DLD following ASCI facilitates
copper binding to lipidated components of the TCA cycle in
peripheral blood, promoting copper-induced cell death. As a result,
the immune microenvironment is disrupted, and macrophage
polarization is altered, exacerbating SCI-IDS and ultimately
worsening ASCI. Further analysis revealed that M2 macrophage
was highly expressed in ASCI-high patients, adversely affecting
their prognosis. ASIA grading and M2 macrophage levels were
significantly positively correlated with DLD expression levels in
ASCI patients. Consequently, high levels of DLD after ASCI
likely contribute to macrophage polarization and a poor prognosis
for ASCI patients. Several studies have demonstrated that M2
macrophage secretes suppressive cytokines to downregulate the
immune response, a process that further exacerbates SCI-IDS
(Ivashkiv, 2013; Murray et al., 2014). Thus, we can conclude
that our hypothesis is correct. In addition, we found that DLD
has potential as a therapeutic target for ASCI. A previous study
identified three clinical phenotypes with different risks of death
among hyperchloremia patients, allowing for precise treatment
based on the patient’s clinical characteristics (Thongprayoon
et al., 2021a). Thongprayoon et al. (2021b) divided hospitalized
patients with acute kidney injury into four groups with different
mortality risks, based on which adjuvant therapies were available

(Thongprayoon et al., 2021b). To determine the applicability of
DLD as a potential therapeutic target for ASCI, we identified two
molecular subtypes associated with cuproptosis in ASCI patients
and calculated the correlation between DLD expression levels
and the two ASCI subtypes (Cluster1 and Cluster2). We found
that DLD was significantly positively correlated with both ASCI
subtypes Cluster1 and Cluster2, indicating that DLD may be a
therapeutic target for ASCI in general.

Our study has multiple strengths. This is the first study to
describe the effects of CRGs on the immune microenvironment
of ASCI patients. Research on the immune microenvironment
and cell death is an important component of SCI research, and
programmed cell death is considered a key process in post-SCI
recovery (Chavan et al., 2017; Prüss et al., 2017; Shi et al., 2021).
Cuproptosis is a novel type of mitochondrial respiration-dependent
metal ion cell death that differs from ferroptosis (Tsvetkov et al.,
2022). It may be possible to develop new treatments for spinal cord
injury due to this unusual mechanism. Furthermore, in contrast
to most diagnostic models that focus primarily on ASCI disease
states, our work also considers neurological function. The majority
of current clinical prediction models use linear architecture but do
not take the interference of multicollinearity into consideration.
We used the variance inflation factor to eliminate the problem
of multicollinearity in logistic regressions. Additionally, we used
a more flexible neural network model to predict neurological
function in ASCI patients, which not only had a high recall rate
and a high goodness of fit but also could be continually evolved.

However, our study also has some limitations. First, this
research relies heavily on bioinformatics analysis, and it needs
more validation through both animal experiments and clinical
trials. Second, in the case of human peripheral blood leukocyte
gene chips, the volume of collected tissue samples is relatively
small. Third, the generalizability of the clinical diagnostic model
lacks external validation from patients at other medical centers.
Although the clinical prediction model constructed in this study
showed reasonable robustness (AUC of 0.757 for the validation
set ROC curve), the detection ability of the deep learning model
must be improved through the integration of a large amount
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of data. Finally, due to the heterogeneity of ASCI, not all ASCI
patients exhibit significant peripheral immunosuppression, and
further subgroup analyses should consider additional immune
profiles of ASCI patients.

5. Conclusion

In conclusion, our study highlights DLD’s potential as a
biomarker and therapeutic target for ASCI, and its association
with M2 macrophage levels affecting patient prognosis. We
developed a clinical prediction model and a neural network
model for better diagnosis and treatment. Despite limitations,
our findings emphasize the significance of metabolic pathways
and the immune microenvironment in ASCI, encouraging further
research on this topic.
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