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Noni (Morinda citrifolia L.) is a plant used by traditional cultures and also in modern health care 
products. Various chemical substances are derived from the plant and include, but are not limited to 
anthraquinone flavonol glycosides, iridoid glycosides, lipids glycosides and triterpenoids. Also 
commonly found on the plant are endophytic bacteria however, there are no reports on endophytic 
bacterial community of Noni. We collected samples from five sites of Noni plant (roots, branches, 
leaves, fruits and seeds) and performed 16S rDNA analysis. Results show that these five parts harbor a 
highly similar bacterial composition with the top four being Sphingomonas, Pseudomonas, Halomonas 
and Geobacillus. Sphingomonas and Pseudomonas were found to be widely distributed in plant 
endophytic biotope; while there are little reports on plant-associated Halomonas and Geobacillus, 
indicating distribution in the plant hosts. Unknown genus also is abundant in five sites of Noni, ranging 
from 26.70 to 33.66%, implicating necessity to reveal them. This study provides information on 
endophytic bacteria in the Noni for future analysis based on a metagenome strategy. 
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INTRODUCTION 
 
Plants host an abundant microbial community in 
rhizosphere, phyllosphere and endosphere areas as 
previous research has reported and the noni plant 
microbiome has received significant attention in recent 
years (Lebeis et al., 2012; Turner and James, 2013; 
Bulgarelli et al., 2013; Berg et al., 2014). Microbes 

colonizing plant surfaces and interior areas are vital for 
plant health and productivity (Bonfante, 2010; Berendsen 
et al., 2012; Ferrara et al., 2012; Monteiro et al., 2012), 
but some of them could lead to disease development of 
plants (James and Olivares, 1998; Monteiro et al., 2012; 
Van Overbeek et al., 2014). Prior reports indicate that 
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plant microbiome could be beneficial for human health 
through consumption of raw plants (Blaser et al., 2013; 
Van Overbeek et al., 2014). Therefore, understanding the 
microbial composition of plants may assist in the develop-
ment of sustainable agriculture (Berg, 2009; Lugtenberg 
and Kamilova, 2009). 

Several scientific teams documented the feasibility of 
promoting environment-friendly agriculture through mani-
pulation of plant microbiome (Bloemberg and Lugtenberg, 
2001; Philippot et al., 2009; Adesemoye et al., 2009; 
Singh et al., 2010; Bakker et al., 2012). Bloemberg et al. 
(2001) revealed that plant microbiome could reduce 
incidence of plant disease, and research conducted by 
Bakker et al. (2012) showed contribution of plant 
microbiome to agricultural production.  

Plant microbiome also holds the potential to keep plant 
productivity with decreased chemical inputs (Adesemoye 
et al., 2009) and function as a key player in biogeoche-
mical cycles (Philippot et al., 2009; Singh et al., 2010). 
Although endophytic microbes were ever considered 
contaminants in some of prior reports (Ryan et al., 2008; 
Reinhold-Hurek and Hurek, 2011; Mitter et al., 2013), 
they should be the most stable microbial partners of 
plants.  

Various researchers have identified endophytic bacteria 
in plants (Hallmann et al., 1997; Compant et al., 2010; 
Monteiro et al., 2012; Sessitsch et al., 2012) and 
implicated their significance in promoting plant growth 
and the ability to control phytopathogens (James, 2000; 
James et al., 2002; Compant et al., 2010; Reinhold-Hurek 
and Hurek, 2011; Sessitsch et al., 2012; Suarez-Moreno 
et al., 2012). However, it is challenging to isolate and 
inoculate these inner bacteria, making it difficult to get a 
whole-picture of interaction network among various 
bacteria and between their hosts. A culture-independent 
strategy is increasingly used to uncover the endophytic 
bacterial community such as those in rice and sugarcane 
(Sessitsch et al., 2012; Fischer et al., 2012).  

To duplicate the method performed on rice and 
sugarcane to evaluate bacterial types and concentra-
tions, we performed 16S rRNA analysis on five different 
plant parts of the medicinal plant named Noni (Morinda 
citrifolia L.) (Chan-Blanco et al., 2006). These endophytic 
bacteria could produce various bioactive compounds (Su 
et al., 2005), that may improve immunity and anti-tumor 
activity (Furusawa et al., 2003; Brown, 2012). Others 
have reported that lignin is associated with antioxidant 
activity (Kamiya et al., 2004). This work will provide an 
informative reference on this “accessory organ” of Noni, 
and the first summary of endophytic bacterial community 
of Noni. 
 
 
MATERIALS AND METHODS 

 
Sample collection and sterilization 

 
Roots, branches, leaves, seeds  and fruits of Noni (Morinda citrifolia  

 
 
 
 
L.) (Supplementary Figure 1) were randomly collected from mature 
Noni trees, which were growing in cultivation field of Hainan Noni 
Biological Engineering Development Co., Ltd. in Sanya, Hainan 
(18°18′01″N, 109°31′36″E, South China), and stored at the 
temperature of 4°C. 

The samples were washed with sterile water, immersed in 70% 
alcohol for 3 min, washed with fresh sodium hypochlorite solution 
(2.5% available Cl

-
) for 5 min, rinsed with 70% alcohol for 30s, and 

finally washed five to seven times with sterile water. Aliquots of the 
final rinsing water were spread on Luria-Bertani (LB) solid medium 
plates and cultured for 3 days at 28°C for detection of bacterial 
colonies (Liu et al., 2013). The samples without bacteria on the 
surface were used for subsequent analysis. 

 
 
DNA extraction, amplification, and sequencing 
 

All selected roots were pooled as a single sample to average the 
deviations in the endophytic bacterial community, which was also 
done for branches, leaves, fruits and seeds. Then about 5.0g of 
surface-sterilized samples of each site were frozen with liquid 
nitrogen and quickly ground into a fine powder with a precooled 
sterile mortar. Then, the CTAB procedure was used to extract 
bacterial DNA (Liu et al., 2012), which was used as template to 
amplify V6 region of the 16S rDNA by primers (967F5‟-
CAACGCGAAGAACCTTACC-3‟) and 1046R (5‟-
CGACAGCCATGCANCACCT-3‟). The purified PCR products were 
mixed in equal concentration, and sequenced by HiSeq 2000 
(Illumina, USA.) following the manipulation instructions at BGI 
Shenzhen (China). 
 

 
Acquisition of unique tags and OTUs  

 
The reads with more than 2 bases (quality value lower than 20) 
were filtered. Then the reads with more than 3 mismatches within 
amplification primers region were removed, and the low quality 
bases which is located at the 3‟ end were trimmed. Besides these, 
the reads which contained more than 15 bases of adapter 

sequences (3 mismatches allowed), 9 N bases or 10 consecutive 
same bases were removed.  

The processed paired-reads were overlapped with each other to 
form V6 tags under following standard: minimum overlapping length 
was 30 bp without mismatch or N base. Non-redundant tags were 
produced by Mothur (version 1.27.0), and the unique tags were the 
typical tags representing all the similar tags. Unique tags were listed 
based on abundance and pre-clustered by single-linkage pre-
clustering (SLP) following 98% similarity. Then the unique tags 

were annotated and clustered into operational taxonomy units 
(OTUs) following 97% identity. 
 
 

Taxonomy assignment and abundance analysis  
 

Unique tags were classified by alignment to Silva RefSSU database 
using BLAST (version 2.2.23, and the key parameters were „-p 
blastn -m 8 -F F -a 2 -e 1e-5 -b 50‟), and the best alignments were 

selected. If more than 66% of the unique tags in OTUs were aligned 
to the same species, the OTUs was assigned to the species and 
then the analysis went into the next taxonomic rank. The 
abundance of tags in different classification levels was calculated 
according to the alignment results. 
 

 
Analysis of sample complexity and similarity  

 

Alpha diversity was measured by indexes including chao1, ACE, 
Shannon and Simpson. Values of rarefaction was calculated by
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Table 1. Data statistics on different tissue regions of Noni. 
 

Sample name 
Data production 

(M) 
Tag number 

Unique tag 
number 

OTU Number 

Root 497.99 340,000 22,290 3,697 

Branch 443.19 350,092 18,482 2,608 

Leaf 538.07 339,441 19,753 2,853 

Fruits 488.82 346,141 19,611 2,871 

Seed 488.47 345,173 19,724 2,951 

 
 
 

Table 2. Sample complexity indexes for different samples. 

 

Sample name Chao1 ACE Shannon Simpson 

Root 14,451.321 33,017.373 4.348 0.039 

Branch 10,357.145 23,206.406 3.965 0.051 

Leaf 11,374.413 27,411.963 4.009 0.045 

Fruits 10,964.413 22,452.468 3.907 0.052 

Seed 11,973.855 24,230.996 3.944 0.051 
 

The bigger chao1, ACE, and Shannon are the more complex the sample was; the smaller Simpson is the more 
complex the sample was. 

 
 
 
Mothur (version 1.27.0) and the rarefraction curve was drawn by R 
(version 2.11.1) in which the extracted tags were used as X-axis 
and the OTUs number was used as Y-axis.  

Phylogenetic analysis was executed based on species 
abundancy at the genus level, and the samples were clustered by 
their phylogenetic distance. The representative sequence for each 
OTUs was selected at random, and the neighbor-joining 
phylogenetic tree (1,000 bootstraps) was constructed by combining 

all OTUs using MEGA4. 
 
 
RESULTS  
 
Species classification and complexity  
 
V6 region of 16S rDNA was amplified and sequenced to 
produce 339,441 to 350,092 tags for root, branch, leaf, 
fruit and seed samples (Table 1). Using the protocol 
summarized in the methods, the unique tags were 
clustered into Operational Taxonomic Units (OTUs) (Table 
1) and aligned with Silva108 database to identify the 
bacterial community of each tissue region in Noni. 
Arranged from 66.34 to 73.30% in different tissues, tags 
could be classified at the genus level (less than 5.63% at 
the species level) as Supplementary Figure 2A showed, 
making it feasible to analyze bacterial composition at this 
taxonomic level.  

Various indexes including chao1, ACE, Shannon and 
Simpson were employed to evaluate the complexity of 
samples, indicating that root harbored the most abundant 
species in comparison to other four sites (Table 2). This 
was also documented in rarefaction analysis summarized 
in Supplementary Figure 2B. 

Discrepancy of species composition in different sites 
of Noni  
 

As Figure 1 showed, five sites are colonized by the same 
most abundant phyla: Proteobacteria (67.90 to 72.67% 
relative abundance), Firmicutes (19.39 to 22.26%) and 
Actinobacteria (5.95 to 6.87%) accounting for more than 
95% of the species components for each site.  

To understand the specific compositions, the bacterial 
community was profiled according to their relative abun-
dance at the genus level (Figure 2). Among those taxa 
examined, Sphingomonas was the most abundant genus 
in all samples, ranging from 19.88 to 25.97%. The 
second abundant genus was Halomonas in the 
endophytic communities of fruits, leaves and seeds, while 
it Pseudomonas and Geobacillus were predominant in 
the branches and roots respectively. Genus 
Pseudomonas and Halomonas were widely distributed 
over all five parts with high relative abundance. Tags 
which could not be classified hold 26.70 to 33.66% 
abundance suggesting necessity to disclose them in the 
follow-up study. 
 
 

Similarity analysis on bacterial community of five 
tissues 
 

The dendrogram (Supplementary Figure 3) indicated that 
Noni fruits hold more similar bacterial types than the 
leaves or root. In fact, the leaves and root held the 
endophytic bacterial community under the similarity 
higher than 97%. Five sites shared 46 genus with high 
relative abundance (Supplementary Figure 4), including
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Figure 2. Distribution of bacteria in different parts of Noni at the genus level. F: fruit; L: leaf; 

B: branch; R: root; S: seed.  
 
 
 

 
 

Figure 1. Distribution of bacteria in different parts of Noni at the phylum level. Green color 
represents Proteobacteria, purple stands for Firmicutes, Actinobacteria and Acidobacteria are 
highlighted in blue and red respectively. F: fruit; L: leaf; B: branch; R: root; S: seed.  



 
 
 
 
the top four abundant genus Sphingomonas, 
Pseudomonas, Halomonas and Geobacillus. Roots 
harbored 13 special genus and this number were 6, 2, 4, 
4 for branches, leaves, fruits and seeds respectively, but 
the highest relative abundance of these special genus 
was just 0.12% suggestive of an insignificant role they 
play. 
 
 

DISCUSSION 
 

Noni is an important plant providing various -derived 
health food raw material but the research about Noni 
mainly concentrated on its efficacy component detection 
and functional test (Liu et al., 2014a; Xu et al., 2014). 
Little research exists on the endophytic bacteria which 
may affect Noni‟s healthy growth, production of bioactive 
ingredients and the plant products‟ quality (Cheng et al., 
2013; Cao et al., 2014; Liu et al., 2014b).  

In this study, we found that bacterial community in 
different sites of Noni tend to be stable and most 
abundant genus for each of the five plant parts were 
Sphingomonas, Pseudomonas, Halomonas, and 
Geobacillus. Endophyte Sphingomonas is widely 
distributed in various plants including tomato, Sedum 
alfredii, Dendrobium officinale (Chen et al., 2014a; Khan 
et al., 2014; Chen et al., 2014b; Yang et al., 2014). 
Several reports have proved significant role of 
Sphingomonas and Pseudomonas for plant hosts by 
increasing plant biomass, improving cadmium uptake, 
fixing nitrogen and producing phytohormone including 
gibberellins and indole-3-acetic acid (IAA) (Chen et al., 
2014a; Khan et al., 2014; Chen et al., 2014b; Yang et al., 
2014). Genomic analysis of some Pseudomonas strains 
isolated from plants indicated that they uphold the 
potential to be involved in plant growth promotion, 
environmental adaptation and antagonism to fungal 
pathogens (Duan et al., 2013; Illakkiam et al., 2014). 
Based on our knowledge, there were no report about 
function analysis on plant-derived endophytic Halomonas 
and Geobacillus, requiring more efforts to elucidate how 
they contribute to the host. This is also needed for 
unclassified genus with high abundance.  

Culture-independent methods applied in this work will 
provide a significant reference to reveal micro-ecosystem 
in Noni and isolate endophytic bacteria with potential 
value for plant growth, bioactive compounds or pathogen 
resistance. Findings in this research will be also referable 
to identify and assemble bacterial genomes from 
metagenomic samples (Nielsen et al., 2014) of Noni. This 
will be a significant alternative to understand functional 
networks for endophytic bacteria in Noni due to difficulties 
in removing host contamination in metagenome analysis 
and culturing some endophytes and laid the foundation 
for better development and use of noni plant resources. 
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Supplementary Figure 1. Base of Noni cultivation and samples collected from five sites. F: 
fruit; L: leaf; B: branch; R: root; S: seed. 
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Supplementary Figure. (2A) Number of tags that could be assigned to specific taxonomic 

level. F: fruit; L: leaf; B: branch; R: root; S: seed. (2B) Rarefaction of different sites of Noni. 
F: fruit; L: leaf; B: branch; R: root; S: seed. 
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(2B) 
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Supplementary Figure 3. Community clustering results of different parts of 
Noni. In the picture, the communities of fruit and leaf exhibited a close 
relationship, and the community components of root was far from other 

samples. Five samples were compared together and the general relationship 
was exhibited. 

 
 
 

 
 

Supplementary Figure 4. Venn diagram describing discrepancy 

of species similarity of five parts at the genus level five samples 
were compared together and the general relationship was 
exhibited. 

	


