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Abstract 
In recent years, with numerous developments of convolutional neural net-
work (CNN) classification models for medical diagnosis, the issue of misre-
cognition/misclassification has become more and more important. Thus, re-
search on misrecognition/misclassification has been progressing. This study 
focuses on the problem of misrecognition/misclassification of CNN classifi-
cation models for coronavirus disease (COVID-19) using chest X-ray images. 
We construct two models for COVID-19 pneumonia classification by 
fine-tuning ResNet-50 architecture, i.e., a model retrained with full-sized 
original images and a model retrained with segmented images. The present 
study demonstrates the uncertainty (misrecognition/misclassification) of 
model performance caused by the discrepancy in the shapes of images at the 
phase of model construction and that of clinical applications. To achieve it, 
we apply three XAI methods to demonstrate and explain the uncertainty of 
classification results obtained from the two constructed models assuming for 
clinical applications. Experimental results indicate that the performance of 
classification models cannot be maintained when the type of constructed 
model and the geometric shape of input images are not matched, which may 
bring about misrecognition in clinical applications. We also notice that the 
effect of adversarial attack might be induced if the method of image segmen-
tation is not performed properly. The results suggest that the best approach to 
obtaining a highly reliable prediction in the classification of COVID-19 
pneumonia is to construct a model using full-sized original images as training 
data and use full-sized original images as the input when utilized in clinical 
applications.  
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1. Introduction 

With the progress of artificial intelligence (AI) technology, especially deep 
learning (DL) technology, the range of its utilization has expanded rapidly and 
has been used in the medical imaging field. Recently, studies on DL-based auto-
mated classification of coronavirus disease (COVID-19) pneumonia caused by 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been ac-
tively conducted [1] [2] [3] [4]. Some of these studies have reported high classi-
fication accuracy. However, while the accuracy is high and is expected to be uti-
lized in COVID-19 diagnosis, the evaluation of whether they should be used 
clinically or not has yet to be determined. Some reasons are due to the fact that 
the computational process of the model used is complex, its operation is difficult 
to understand, and it is practically a black box. One of the problems with black 
boxes in classification is that of misclassification. Ribcage et al. reported that in 
their classification model for wolves and Siberian huskies, the classifier predicts 
“wolf” if the image has a snow background, and “husky” otherwise, regardless of 
animal color, position, pose, etc. [5] Zech et al. gave an example of a pneumonia 
detection model for chest X-ray (CXR) images in which L/R markers in the im-
ages were learned as strong features for classification [6]. These can be attributed 
to the quality and bias of the training data set. On the other hand, adversarial 
perturbations [7] [8] [9] have been demonstrated that they can cause a classifica-
tion model to misclassify images. Adversarial perturbations, first discovered by 
Szegedy et al. [9], are slight modifications of deep convolutional neural network 
(CNN) model input that cause misclassification. That is, intentionally giving a 
small fluctuation (noise) to the input image, which is not easily noticeable to the 
human eye, can cause the model to make a misclassification and a wrong predic-
tion. Goodfellow et al. reported an interesting adversarial example [8]. In this 
example, a perturbation is applied to an image that the CNN model was origi-
nally able to correctly classify as a panda, causing it to be misclassified as a gib-
bon. However, to a human, the difference from the original image is barely no-
ticeable and the image appears to remain a panda. However, with the DL re-
search progress, there have been studies regarding misrecognition. Therefore, 
explaining CNN misclassification is a vitally important issue in the development 
of reliable models. 

CNN-based classification models typically learn to use particular features to 
represent attributes when they appear in the training dataset. Therefore, in order 
to decrease the misclassification of an image, we believe that it is very important 
to analyze how the model’s performance is affected when an unlearned feature is 
inputted. It is even more important in the case of medical images. In the lesion 
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classification of medical images, the cropped images of lesioned areas are gener-
ally used as the training dataset (data for training and validation). The issue of 
classification of COVID-19 using CNN is the same as that of other disease clas-
sification models. Despite promising results of using CNN to detect COVID-19 
on computed tomography (CT) images, the use of CT for this purpose is limited 
by concerns about time, cost, and radiation exposure. X-ray machines are more 
affordable and portable, making them an important alternative. Therefore, if the 
diagnostic performance of CXR is further improved, CXR could be utilized as a 
tool for the diagnosis of COVID-19.  

Studies of disease classification on CXR images have been divided into two 
main types. Type 1 is a study in which the CXR images themselves (the whole 
images; hereinafter referred to as the original images) are used as the training 
dataset [1] [2] [3], and type 2 is a study in which images of the lung region (only 
the lung regions are extracted from the original images) are used as the training 
dataset [4] [10] [11]. In other words, in type 1 (the training dataset consists of a 
set of original images), the model was trained using original images with shapes 
that contain many structures unrelated to lung lesions. Thus, the model may 
learn the misplaced regions that are not lesions as features (e.g., when the 
shoulder joint is in the raised state, the model might learn it as COVID-19 
pneumonia). On the other hand, when the constructed model is clinically ap-
plied and put into practical use, it is considered that the original images of CXR 
are inputted. In the case of the model trained on the images of the lung region 
only (model of type 2), the model will predict an unknown geometric shape im-
age that has not been trained (did not exist at the training phase). In other 
words, the inputs of a model can be regarded as the cause of the prediction, even 
if the relationship between the inputs and the outcome to be predicted might not 
be causal in reality. Therefore, even if the model shows high performance during 
the construction phase, its performance might not be guaranteed at the stage of 
practical use. Thus, in order to develop a reliable and high-performance classifi-
cation model, it is necessary to evaluate the model’s accuracy during the con-
struction phase, perform verification assuming practical use, and clarify and 
analyze the evidence of prediction. For example, in the case of COVID-19 
pneumonia, the most frequently observed lesion distribution patterns on CXR 
and CT images are bilateral involvement, peripheral distribution, and ground-glass 
opacification (GGO) [12]. Therefore, as a well-designed model, it should reflect 
these radiological findings and use them as evidence for prediction, when em-
ployed in clinical applications. 

In this work, we focus on the uncertainty (misrecognition/misclassification) of 
the constructed, high-performance classification models to be utilized in clinical 
applications. To this end, we construct two types of classification models for 
COVID-19 pneumonia (a model retrained with original images and a model re-
trained with a segmented image having a lung region) and perform verification 
assuming clinical practical use. We use three explainable AI (XAI) techniques to 
explain the evidence of prediction of the constructed models. By analyzing the 
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XAI results and the models’ prediction results and prediction scores, we expect 
that the presence of misrecognition/misclassification and its triggering factor in 
clinical applications will be clarified.  

We used ResNet-50 [13] [14] [15], which has been proven effective in many 
tasks in the field of medical imaging, as the base for constructing two classifica-
tion models. ResNet, short for residual network, is a pre-trained model that has 
been trained on over 1 million images in the ImageNet database [16] and was the 
winner of the ImageNet Challenge in 2015. ResNet can have very deep networks 
of up to 152 layers. There are five versions of the ResNet model, each containing 
5, 34, 50, 101, and 152 layers, respectively. ResNet-50 corresponds to a 50-layer 
residual network. However, since ResNet is a network designed for large-scale 
natural images intrinsically different from CXR images, it is not suitable for 
performing general transfer learning in our study. Therefore, we use the two 
types of training datasets described above to respectively perform fine-tuning on 
all layers of the architecture. 

In this paper, we conducted an explainable analysis of deep CNNs for 
COVID-19 classification. The main contributions of this work include: 
 We build two deep learning models based on a well-established ResNet-50 

model for the classification of COVID-19 infection, along with evaluating 
and comparing the performance of the models.  

 We employ three widely-used XAI methods, i.e., local Interpretable mod-
el-agnostic explanations (LIME), occlusion sensitivity, and gradient-weighted 
class activation mapping (Grad-CAM), to visually understand and explain 
the constructed models’ predictions. We also qualitatively compare and as-
sess the function of the XAI methods. 

 We perform an in-depth analysis of the experimental results and draw some 
inspiration from explainable COVID-19 disease classification using CXR 
images in clinical practical applications. 

The rest of the paper is organized as follows. Section 2 describes the image 
data sets, the proposed CNN models, and three XAI methods used in this work. 
Section 3 presents the experimental results. Section 4 gives the discussion of the 
results. Section 5 concludes this work comprehensively. 

2. Methods 

In this study, fine-tuning of the pre-trained ResNet-50 was conducted and 
re-training with 1200 CXR images was performed with 10-fold cross validation. 
The classification targets were COVID-19 pneumonia, non-COVID-19 viral 
pneumonia, bacterial pneumonia, and normal. The following two types of CNN 
models were constructed. They were chosen based on the assumption that the 
input image utilized in the COVID-19 disease classification is either an entire 
image or a segmented image from the entire image. Type 1 is a model retrained 
on the full-size, original CXR images (hereafter referred to as “model_original”). 
Type 2 is a model retrained on segmented lung region in CXR images (hereafter 
referred to as “model_segmented”). It is assumed that the above two types of 
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models will be clinically applied and put into practical use. A total of 20 unused, 
annotated original images that were not included in the retraining dataset were 
inputted into the models as test images for analyzing the prediction scores and 
misrecognition of the models. In addition, in order to evaluate the prediction 
results obtained from inputting the unused, annotated original (full-sized) im-
ages into the two classification models, the prediction results obtained by using 
the segmented (only lung region) images cropped from the same unused images 
as inputs to the same two models were also calculated. Three XAI methods, 
namely, LIME [5] [17] [18], occlusion sensitivity [19], and Grad-CAM [20] were 
employed for the analysis of misrecognition. 

2.1. Image Datasets 

The image datasets used in this study are the COVID-19 CXR Datasets publicly 
published by Unais Sait et al. [21] and the image set published by the Radiologi-
cal Technology Society of Japan [22]. Thus, ethics issues do not arise in this 
work and the requirement to obtain informed consent was waived.  

A total of 1200 images (jpg and DICOM images) were randomly selected from 
the above described two datasets consisting of 300 images for each of 4 catego-
ries, i.e., COVID-19 pneumonia, viral pneumonia, bacterial pneumonia, and 
normal. We applied 10-fold cross-validation for the network re-training. The 
re-training dataset used for constructing model_segmented were the images of 
the lung region obtained by cropping those original images from the dataset 
which were used for constructing model_original. Therefore, there is no differ-
ence in lesion complexity between the training datasets of the two models. As a 
method for segmentation of lung regions, edge enhancement of the original im-
ages was performed using an extended Sobel filter with a mask size of 5 × 5 pix-
els, and the lung contours were extracted by applying binarization [23]. To ac-
count for the overlap between the heart and lungs, the mediastinum was ma-
nually adjusted and a segmentation mask was created. Figure 1 shows some 
examples of training data for constructing model_original, generated lung masks 
for segmentation, and training data for constructing model_segmented. 

2.2. Overview of ResNet-50-Based Architecture 

In this study, we performed re-training based on the pre-trained ResNet-50. The 
structure of the network is shown in Figure 2. ResNet-50 consists of 16 
processing blocks and equips with two types of shortcut connections as shown in 
Figure 2(a). One is a module called convolution block that puts a convolution 
layer in a shortcut (the input dimension is smaller than the output dimension) 
(Figure 2(b)). The other is a module called identity block (input has the same 
dimension as output) with no convolution layer in the shortcut (Figure 2(c)). 
Each module has a bottleneck building block structure consisting of 3 layers per 
block (1 × 1, 3 × 3, and 1 × 1 convolution layers), which allows the number of 
parameters to be reduced without degrading performance. We retrained all lay-
ers of the network with CXR image datasets. In other words, four categories  
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Figure 1. Examples of CXR images from the collected datasets. Upper row: examples of 
training data used for constructing model_original. Middle row: segmentation masks 
used for the upper-row images. Lower row: images after performing image processing 
using the masks shown in the middle low (used as training data of for constructing mod-
el_segmented). (a) COVID-19 pneumonia image, (b) Viral pneumonia image, (c) Bac-
terial pneumonia image, (d) Normal image. 
 

 

Figure 2. Outline of ResNet-50-based architecture. (a) Overview of the overall structure 
of the network. The symbols of ×2, ×3, ×5 in the figure are the number of blocks. (b) 
Structure of a convolution block where input dimension varies. (c) Structure of an iden-
tity block where input dimension does not change. 
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were classified using fine-tuning network without placing frozen layers. The last 
fully-connected layer and the final classification layer of the network were newly 
replaced according to the number of categories. 

Since ResNet structurally requires input data size to be 224 × 224, the input 
images were all resized with the bi-cubic interpolation. We performed a 10-fold 
cross-validation for the network re-training. Of the total 1200 images, 1080 im-
ages, 90% of the total images, were used for re-training and the remaining 120 
images for validation. The average of these classification accuracies is taken as 
the accuracy of the network. The mini-batch size was 36 and the optimizer used 
was Adam. Adam is an optimization algorithm that can be used as an alternative 
to the classical stochastic gradient descent method to iteratively update network 
weights based on training data [24]. In the re-training, in order to improve the 
accuracy, the parameters were adjusted so that the learning speed advanced fast-
er in the newly replaced fully connected layer. On the contrary, the learning 
speed decreased in the transfer layer. Also, parameters were adjusted so that the 
learning rate decreased every 5 epochs. Furthermore, an L2 norm regularization 
was applied to the cost function (also referred to as loss function) to prevent 
overfitting. The epoch setting was determined by performing accuracy verifica-
tion at each iteration cycle, and re-training stops after 5 consecutive iterations 
when the accuracy has stopped improving. 

2.3. Explainable Artificial Intelligence 

The outlines of three widely used XAI methods, LIME [5], occlusion sensitivity 
[19] and Grad-CAM [20] adopted in this study for visual analysis are briefly de-
scribed in the following sub-sections, respectively. 

2.3.1. Local Interpretable Model-Agnostic Explanations (LIME) 
LIME is an algorithm proposed by Ribeiro et al. [5] that explains the individual 
predictions of a black box model. The key idea of the method is to use a simpler 
glass box model that is easier to interpret to locally approximate the black box 
model. LIME creates perturbations by turning on and off a portion of the super 
pixels in the image. To create a human-readable representation, LIME attempts 
to determine the importance of contiguous super pixels in a source image with 
respect to the output class. It is a procedure that allows one to understand how 
the input features of a deep learning model affect its predictions. The procedure 
is to divide the input image into super pixels. A super pixel is an interconnected 
pixel of location and color (similar colors); the number of super pixels makes the 
region segmentation finer and more complex. Figure 3 shows an example of re-
gion segmentation by super pixels. In this study, both lungs of each image were 
segmented into at least upper, middle, and lower lung fields, respectively, and 
the shoulder and diaphragm were distinguished. In addition, the number of su-
per pixels was set to 40 to avoid complexity. Here, it is possible to add variations 
to the image (to change image features) by randomly turning on (active) or off 
(inactive) the individual regions divided by the super pixels. Therefore, multiple  
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Figure 3. An example of region segmentation using super pixels. The features and resolu-
tion obtained differ depending on the number of super pixels. (a) 10 super pixels, (b) 30 
super pixels, (c) Segmentation result using 40 super pixels adopted in this study, (d) 60 
super pixels. 
 
sample images that are similar to the input image can be generated by perform-
ing on (active) and off (inactive) settings. There are 10,000 types of sample im-
ages generated in this study. LIME predicts each generated sample image with a 
respective black box model and then trains the simple classifier (regression 
model) based on the sample image set. The cosine distance between each sample 
image and the original image was calculated, and the higher the similarity be-
tween the sample image and the original image, the greater its weight and im-
portance. After being weighting, it was fitted to a linear regression model and 
the approximation coefficients for each feature were acquired. Features with 
large coefficients play a major role in the prediction of the black box model. In 
this work, we used a linear regression model based on Lasso regression. More 
details about Lasso regression can be found in [25]. 

2.3.2. Occlusion Sensitivity  
Occlusion sensitivity is an approach for understanding which parts of an image 
are most important for classification. It helps us understand the learning beha-
vior of the underlying task by determining whether the network is actually cate-
gorized based on task-specific features [19]. Specifically, different small regions 
of the input image are sequentially blocked with an occlusion mask (a rectangu-
lar mask) and the change in probability score for a predetermined class is meas-
ured as a function of mask position. The procedure of the approach is as follows.  

Step 1: Classify the target image with a black box model and confirm the 
probability score of the classification class.  

Step 2: Replace a small region of the input image with an occlusion mask to 
give the input image a small variation.  

Step 3: Input the variation image obtained from step 2 to the black box model 
and calculate the probability score of the classification class. 
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Step 4: Slide the occlusion mask region in the column direction to calculate 
the probability score of the classification class. 

Step 5: Repeat the steps until the occlusion mask moves across the entire im-
age. 

The procedure can highlight which regions of the image are most important 
in the classification. In this study, since we want to target the scattered and rela-
tively wide lesion regions such as multiple patchy shadows and consolidation, 
the mask size is set to the integer value, which is nearest to 30% of the input im-
age dimension. The width of shift is an integer value that is nearest to 20% of the 
input image size. 

2.3.3. Gradient-Weighted Class Activation Mapping (Grad-CAM) 
The CNN model consists of a feature extraction module and a classification 
module. Generally, the classification module contains a fully connected neural 
network model, and the extracted features are converted into a probability score 
for each category in the softmax layer. The final prediction classification result of 
the network is the category with the highest probability score. Grad-CAM [20] is 
a class-discriminative localization method that can generate visual explanations 
without requiring architectural changes or retraining. It localizes the relevant 
image area, and uses the gradient (derivative factor) of the feature map of the fi-
nal convolutional layer of the network to emphasize which part of the image has 
the greatest effect on the probability score of the final prediction. The areas 
where the gradient is large are the areas that have a great effect on the prediction 
results. Figure 4 shows the flowchart of how to implement Grad-CAM. More 
details about Grad-CAM can be found in [20]. 

2.3.4. Brief Comparison of XAI Methods Used for Explanation of  
Pneumonia in CXR Images 

The XAI is used to provide local explanations. The local explanation is an ex-
planation given to each prediction result. This requires two steps: 1) calculating 
the impact of each input on the output, and 2) expressing it in a hu-
man-understandable way. All of the above-mentioned three XAI methods in-
clude these two steps, but the methods are different from each other, and the re-
sults obtained are also different. For example, because occlusion sensitivity 
measures important features by stride in rectangular regions, the importance of 
the combination of features between regions is unknown. In LIME, the predic-
tions of a simple classifier used for approximation are not always correct. 
Grad-CAM shows which regions of the image affected the probability score of 
the final prediction and it does not always provide evidence for COVID-19 
pneumonia. Therefore, we believe that the prediction explanations using a com-
bination of the three XAI methods together would be useful. Table 1 shows a 
summary comparison of the three methods. 

3. Results 

The pneumonia classification models constructed in this study are a model  
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Figure 4. Schematic of the Grad-CAM. (a) Input test images to the network and obtain prediction 
results. (b) Back propagate with COVID-19 class as 1 and other classes as 0. (c) Calculate the glob-
al average pooling (GAP) of the gradient for each channel and use it as the weight for the network. 
(d) Perform a weighted combination of forward activation maps, and follow it by a ReLU to obtain 
Grad-CAM. 

 
Table 1. Summary comparison of the characteristics of the three XAI methods. 

XAI 
Method 

Characteristics Description of Pneumonia CXR Image Spatial Resolution 

LIME 

*A method of approximating the 
prediction result of a black box 
model with another model. 
*Approximate classifiers are not 
always correct. 

*Multiple lesions (GGO, consolidation, 
etc.) in the image can be effectively 
visualized. 
*Highlight which superpixel region of the 
image is most important for classification. 

*The spatial resolution is adjusted 
according to the number of 
superpixels, allowing for a high 
degree of flexibility in feature 
investigation. 

Occlusion 
Sensitivity 

*A method of making data 
partially obstructive and 
measuring the importance of a 
region using a black box model. 
*The importance of combination 
features cannot be expressed. 

*Multiple lesions (GGO, consolidation, 
etc.) in the image can be visualized. 
*Highlight which region of the image is 
most important for classification. 

*The spatial resolution is 
adjusted according to the mask 
size and the size of the stride, 
allowing for a high degree of 
flexibility in feature investigation. 

Grad-CAM 

*A method to make the black 
box model itself have an 
evidence for judgment. 
*Describes the regions that 
affects the final score. 

*Focuses on a wide range of a major lesion 
and therefore cannot identify (visualize) 
multiple lesions in the image [26]. 
*Highlight the pixels that contribute to 
change the final decision. 

*The spatial resolution of the 
feature map in the final 
convolution layer is low 
because it is 7 × 7 
(in the case of ResNet-50). 
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trained on whole CXR images (model_original and a model trained on lung re-
gion images (model_segmented). The overall accuracy at the phase of the con-
struction of both models were 0.803 and 0.870, respectively, and the area under 
the receiver operating characteristic (ROC) curve (AUC) values were 0.969 and 
0.898, respectively. Figure 5 shows the confusion matrices of the two con-
structed models. 

The input images to both constructed models assumed for clinical application 
and practical use were 20 unused COVID-19 pneumonia CXR images with a va-
riety of different findings. In this study, we used Grad-CAM to identify the fea-
ture regions that was utilized by the models to make the final decision during 
clinical application. On the other hand, the important feature regions that in-
fluence the class scores were identified by occlusion sensitivity. Furthermore, 
LIME was used to approximate the model’s prediction results with a linear re-
gression model to identify important features that have a strong influence on the 
class scores. 

Figure 6(a) shows an example of 10 input images (both the original and seg-
mented images of COVID-19 pneumonia CXR) assuming for clinical application 
purposes. Figure 6(b) and Figure 6(c) are the probability scores when these two 
types of images were respectively inputted to both the model_original and the 
model_segmented. Figure 7(a) is the original image of img.8 shown in Figure 
6(a), and the lesions on the image are marked in Figure 7(b). Figure 7(c) is the 
segmented image of img.8, and the lesions are noted in the same way as shown 
in Figure 7(b). The locations marked with three asterisks “⁂” in the figure indi-
cate the ground-glass shadows, the area marked with orange circles show hilar 
lymphadenopathy, and the areas marked with yellow ellipses indicate breast 
shadows. Figure 8 and Figure 9 illustrate the respective results when the origi-
nal image (entire image) and the segmented image were inputted to both the 
model_original and the model_segmented. The top row of Figure 8 and Figure 9 
 

 

Figure 5. The confusion matrices of the two constructed models. The values in the bottom row of the ma-
trices are recalls, those in the rightmost column are precision. The value in the cell located at the lower right 
corner is overall accuracy. (a) Result of model_original. (b) Result of model_segmented. 
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(a) 

  
(b)                                       (c) 

Figure 6. An example of the results of inputting COVID-19 pneumonia CXR images to each of the 
two constructed models. (a) Input images: original image on the left and segmented image on the 
right of the paired images. (b) Prediction scores of the two models when the original images were 
inputted, (c) Prediction scores of the two models when the segmented images were inputted. Here, it 
is notable that the prediction score of img.7 using the model_segmented is 0. 

 

 

Figure 7. (a) The original image of img.8 shown in Figure 6(a). (b) The lesions on the 
image are marked. (c) The segmented image of img.8. The locations marked with three 
asterisks “⁂” in the figures indicate the ground-glass shadows, the area marked with 
orange circles show hilar lymphadenopathy, and the areas marked with yellow ellipses 
indicate breast shadows. 
 
shows the input image (COVID-19 CXR image), the numerical values are the 
scores for each class. Below the numerical values are the LIME results, and in the 
bottom row is the result of occlusion sensitivity maps. In both cases, the red re-
gions of the heatmaps are the feature regions that have a great influence on the 
class score, and the influence decreases as it gets closer to blue. On the right side 
of the input image is the result of Grad-CAM. The regions that contributed most  
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Figure 8. An example of the results of inputting the original image to the two constructed models (in the case of img.8 shown in 
Figure 6(a)). (a) In the case of model_original. (b) In the case of the model_segmented. 
 

 

Figure 9. An example of the results of inputting the segmented image to the two constructed models (in the case of img.8 shown 
in Figure 6(a)). (a) In the case of model_original. (b) In the case of the model_segmented. 

 
to the final prediction are shown in red. When the color is closer to blue, it indi-
cates a weaker contribution to the prediction. 

Figure 10 shows the prediction results when the original image of number 
img.10 shown in Figure 6 was inputted to the model_segmented (probability of 
COVID-19 is 83%). Also, in this figure, the important features that contributed 
significantly to the prediction are illustrated by Grad-CAM, LIME, and occlusion  
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Figure 10. An example of inputting the original image to the model_segmented. (a) Input image. (b) 
Model_segmented and the prediction score. (c) Important features that provide the evidence for the 
predictions shown by the three XAI methods. (d) Magnified view of the 4 important features (su-
per-pixel regions) shown by LIME. Numbers 1 to 3 in the figure are electrocardiogram cables out-
side the lung field, and number 4 is an oxygen mask tube in the background. 

 
sensitivity. The feature regions that have a large effect on the class score are the 
red regions of the heatmaps, and the effect decreases as it turns to blue. Figure 
10(d) is the magnified view of four feature regions (super pixels) that have a 
great influence on the class score as indicated by LIME. 

4. Discussion 

We constructed two models for COVID-19 pneumonia classification based on 
ResNet-50, and demonstrated their performance for clinical applications. As 
shown in Figure 5, the overall accuracy at the phase of construction is 80.3% in 
model_original and 87.0% in model_segmented, respectively, while the recall for 
COVID-19 pneumonia was both 89%, and the precision for that were 83.4% and 
84.2%, respectively. In other words, the model_segmented is more accurate 
compared with the model_original. This result shows the superiority of using 
segmented images without unnecessary structures as training data to build a 
model. On the other hand, the false positive (FP) rates are 6.8% and 5.6%, re-
spectively. The model_segmented has a slightly higher FP rate. However, in the 
classification of pneumonia, including COVID-19 pneumonia, it is important 
that the false negative (FN) rate (the percentage of COVID19 pneumonia mis-
classified as other pneumonia) should be low. The FN rates for both models are 
10.3% and 10.4%, respectively. There is no statistically significant difference be-
tween the two models. This suggests that there might be no difference between 
the two models for detecting COVID-19 pneumonia. However, for example, 
when the original image of img.1 shown in Figure 6(a) was inputted to the 
model_segmented, the classification score was 52% , and when it was inputted to 
the model_original, the classification score was 99% (see Figure 6(b)). The re-
sults indicate that the model_segmented provides a low classification score and 
is not a reliable prediction. For other COVID-19 pneumonia original images, the 
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model_segmented tended to classify them with lower scores. Furthermore, in the 
cases of the original images of img.7 and img.8, the model_segmented made 
misclassification (see Figure 6(b)). More specifically, in the case of img.7, the 
prediction scores for the 4 categories are: COVID-19 (17%), viral (34%), bacteri-
al (49%), and normal (0%). Similarly, in the case of img.8, the prediction results 
are: COVID-19 (1.4%)) viral (0.2%), bacterial (98.4%), and normal (0%). In both 
cases, the model_segmented misclassified COVID-19 as “bacterial”. These re-
sults suggest the risks of using the model_segmented. On the other hand, in the 
original image of img.10, the model_segmented classified COVID-19 pneumo-
nia with a higher score, and the accuracy of the model_segmented at the phase of 
construction appeared to be maintained (see Figure 6(b)).  

For verification, we used all unused, annotated images as input images and 
analyzed the evidence of prediction using the three XAI methods together. Fig-
ure 10 illustrates the evidence for prediction for the original image of img.10 
shown in Figure 6(a). From Figure 10(d), it can be seen that the important fea-
tures explained with LIME are the electrocardiogram cables outside the lung 
field and the tube of the oxygen mask. Although the important features (regions 
shown by the heat maps) shown by the three XAI methods do not completely 
match, the Grad-CAM shown in Figure 10(c) highlights the electrocardiogram 
cables inside and outside the lung field. It is clear from Figure 10(c) that the oc-
clusion sensitivity also highlights the electrocardiogram cables. That is, with re-
spect to the original image of img.10, even though the model_segmented hig-
hlighted wrong features, it predicted a high score. These results suggest that 
when the original image is inputted to the model_segmented, unknown features 
may induce misrecognition and make prediction unreliable. 

In this study, the segmented images were also inputted into both models for 
investigation in consideration of the possibility that segmented images might be 
used in clinical applications. As shown in Figure 6(c), it is difficult to determine 
which model is superior when using segmented images as input. On the other 
hand, looking at the image of img.8, when the original image was inputted to the 
model_segmented, misclassification occurred (see Figure 6(b)). However, in the 
case that when the segmented image was inputted to the model_segmented, the 
model made the correct classification with a dramatically higher score (98%) 
(see Figure 6(c)). While these experimental results reflect the accuracy of the 
model_segmented at the phase of construction, they also suggest that the predic-
tion result may vary significantly depending on the shape of the input image, for 
example, with or without segmentation or the image shape after segmentation. 
In other words, the reason why it is difficult to determine which model is more 
useful in Figure 6(c) is that depending on the method of segmentation, an effect 
such as Adversarial Attack [9] (giving a small perturbation to the image causes 
the model to misrecognize) might be brought about. 

Figure 8 and Figure 9 are the results of inputting the original and segmented 
images of img.8 into each of the two models. The right side of each input image 
is the result of Grad-CAM. The red regions are the areas that contributed most 

https://doi.org/10.4236/ojmi.2022.123009


E. Matsuyama et al. 
 

 

DOI: 10.4236/ojmi.2022.123009 98 Open Journal of Medical Imaging 
 

to the final classification, and the closer it is to the blue color, the lower the con-
tribution. The numerical values in the figure are the prediction probabilities for 
each class. The middle and bottom rows below the numerical values are the re-
sults for LIME and occlusion sensitivity, respectively. In both cases, the regions 
that are important for classification are clearly shown on the heat maps. Figure 
8(a) is the result of inputting the original image into the model_original. In this 
case, the probability of having COVID-19 pneumonia is 92%. The LIME results 
indicate that the important feature regions (red regions) that affect the predic-
tion are the left lung field and the right upper middle lung field areas, while the 
subdiaphragmatic region (blue region) is less important. In occlusion sensitivity, 
the ground-glass shadows (red area) in the lower left lung field are indicated as 
important features. All of these XAI methods capture the lesion regions, indi-
cating that the feature recognition is correctly performed. From the results of 
Grad-CAM, it can be seen that the model_original recognized the ground-glass 
shadows of the lower left lung field as the strongest evidence for prediction (92% 
as COVID-19). In this case, the probability of viral is 7%. The important feature 
of the viral (red region) as indicated by LIME in the subdiaphragmatic region. In 
other words, the condition of the subdiaphragmatic region (e.g., the lung region 
overlapping with the diaphragm) is similar to viral. The features of viral as indi-
cated by occlusion sensitivity are ground glass shadows in the right lung, hilar 
and bronchi, ground glass shadows in the left lung, and subdiaphragmatic. 
These states suggest a similarity to viral. The probability of “Normal” obtained 
from the experiments is 1%. The result of LIME is a decision that the subdiaph-
ragmatic region slightly resembles “Normal” case. The occlusion sensitivity in-
dicates that the probability of “Normal” is 1%, excluding both the ground glass 
shadow of the left lower lung field and the area of the upper trachea (blue re-
gion). Based on these results, we believe that a highly reliable prediction can be 
obtained by inputting the original images to the model_original as a decision 
support tool utilized in clinical practice. 

Figure 8(b) shows the results of inputting the original COVID-19 pneumonia 
image into the model_segmented. In this case, the prediction score for “bacteri-
al” is 98%. LIME and occlusion sensitivity indicates that the important feature of 
“bacterial” is the left breast shadow outside the lung field. This is not the result 
of the model’s mislearning as “bacterial”, when breast shadows are present. The 
model used here is the model_segmented, and the breast shadow itself did not 
exist at the phase of retraining. In other words, it can be said that the inputted, 
unknown feature (the breast shadow outside the lung field) triggered the model 
to make mis-recognition. As a result, the model_segmented misclassified COVID-19 
pneumonia with a predictive score of 14%. Although the important region for 
COVID-19 pneumonia, as indicated by LIME and occlusion sensitivity contains 
sufficient lesion areas in both lungs, it is not recognized as COCID-19 pneumo-
nia. In Grad-CAM, the left breast shadow outside the lung field was used as evi-
dence for the final prediction. Furthermore, both lung fields are indicated in 
blue, and it is clear that they were rarely used in the final prediction. In other 
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words, when the model_segmented inputted the images with an unknown shape 
that did not exist at the phase of training, the model might make an uncertain 
prediction like the under-learned model. Figure 9 illustrates the results of input-
ting the segmented images of img.8 into the two constructed models. As shown 
in Figure 9(a), though the model_original correctly classified COVID-19 
pneumonia, the prediction is disturbed and the confidence score is low (54%). In 
the LIME and occlusion sensitivity, the small lesion regions inside the lung field 
are regarded as an important feature. On the other hand, the heatmap colors in 
the background region and in the lung field are very similar. This suggests that 
the model_original also featured the region (body shape outside the lung field 
which was removed by the segmentation) that existed at the phase of retraining 
as a feature for judgment. From the results of Grad-CAM, it is also clear that the 
evidence of model_original judging the category as COVID-19 pneumonia, is 
based on the background area without structures in addition to the ground-glass 
shadows present in both lungs. In other words, it is considered the shape region 
that is present only at the training phase becomes a trigger factor of misrecogni-
tion, and as a result, a prediction with low certainty similar to lack of learning is 
made. 

Figure 9(b) is the result of using the model_segmented. In this case, the score 
for COVID-19 pneumonia is 98% and is considered highly confident. However, 
both LIME and occlusion sensitivity regard the space between the left and right 
lungs (the area that has been removed by segmentation) as one of the important 
features. This suggests that the shape obtained after performing a certain seg-
mentation processing may be a factor that induces misrecognition. In addition, 
LIME and occlusion sensitivity respectively indicate the important features of 
different areas of the lung regions. However, they both regard intrapulmonary 
lesions as important features. When these are combined, they are almost the 
same as the regions indicated by Grad-CAM. In other words, they represent the 
evidence for the final prediction. These results suggest that a more detailed and 
definitive predictive explanation can be obtained by using all three types of XAI 
methods together. 

Our study had some limitations. First, we only constructed two types of con-
structed models using ResNet-50 as the backbone network. The development of 
a highly reliable classification model by integrating AI and machine-learning 
technologies is our next task. Second, the accuracy of the models at the phase of 
construction was 0.80 for the model retrained with full-size original images and 
0.87 for the model retrained with the segmented images, respectively. While the 
achieved performance is very encouraging, further analysis is required on a larg-
er set of COVID-19 images, to have a more reliable estimation of accuracy rates. 
Also, a more detailed validation is required to improve the accuracy of the clas-
sification models for widespread use. Further adjustment of the parameters of 
the network may be required. Third, The segmentation method used did not 
take quantitative considerations into account, such as to what extent the medias-
tinum should be removed. Our future work will include a detailed examination 
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of whether the method of segmentation works on a negative effect of adversarial 
attack and to what extent it affects the prediction. Finally, we did not quantita-
tively compare the performance of the three XAI employed in this study. Our 
future tasks include a quantitative assessment of XAI methods using metrics 
such as Max-sensitivity metric, file size, and computation time. Additionally, the 
field of XAI is still in its infancy and XAI methods should be developed and se-
lected with care. 

5. Conclusions 

In this paper, we constructed two models for COVID-19 pneumonia classifica-
tion by fine-tuning ResNet-50, i.e., a model retrained with full-sized original 
images and a model retrained with segmented images. We applied three XAI 
techniques to demonstrate and explain the uncertainty of classification results 
obtained from the two models assuming clinical applications. In the construc-
tion of the pneumonia classification models, as a training dataset, the use of 
segmented images which are the images of only lung regions with removed un-
necessary structures obtained higher accuracy as compared to that of full-sized 
original images. On the other hand, in clinical applications of model_segmented, 
when the full-sized original image was used as the input for prediction, the pre-
diction might be erroneous resulting from being confused by the structures and 
shapes of the input image because those structures and shapes are unknown to 
the model_segmented. Moreover, the results showed that the model could pre-
dict with a high score, despite emphasizing incorrect features. We also found 
that the way of segmentation used may bring about adversarial-like attack ef-
fects. In the clinical application of the model_original, high-performance classi-
fication can be achieved, if the whole-sized original images are used as input. 
However, when segmented images are inputted, the model_original may focus 
on the background region without structures and this may cause a disturbance 
in the prediction, in turn, resulting in less confident predictions.  

In conclusion, we believe that the best approach to obtaining a highly reliable 
prediction in the classification of COVID-19 pneumonia is to construct a model 
using full-sized original images as training data and use full-sized original im-
ages as the input when utilized in clinical applications. 
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